ترغب بنشر مسار تعليمي؟ اضغط هنا

Neutron Irradiation of MgB2 Bulk Superconductors

86   0   0.0 ( 0 )
 نشر من قبل Eisterer Michael
 تاريخ النشر 2001
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Sintered samples of MgB2 were irradiated in a fission reactor. Defects in the bulk microstructure are produced during this process mainly by the 10B(n,a)7Li reaction while collisions of fast neutrons with the lattice atoms induce much less damage. Self-shielding effects turn out to be very important and lead to a highly inhomogeneous defect distribution in the irradiated samples. The resulting disorder enhances the normal state resistivity and the upper critical field. The irreversibility line shifts to higher fields at low temperatures and the measured critical current densities increase following irradiation.

قيم البحث

اقرأ أيضاً

The effects of neutron irradiation on normal state and superconducting properties of epitaxial magnesium diboride thin films are studied up to fluences of 1020 cm-2. All the properties of the films change systematically upon irradiation. Critical tem perature is suppressed and, at the highest fluence, no superconducting transition is observed down to 1.8 K. Residual resistivity progressively increases from 1 to 190 microohmcm; c axis expands and then saturates at the highest damage level. We discuss the mechanism of damage through the comparison with other damage procedures. The normal state magnetoresistivity of selected samples measured up to high fields (28 and 45T) allows to determine unambiguously the scattering rates in each band; the crossover between the clean and dirty limit in each sample can be monitored. This set of samples, with controlled amount of disorder, is suitable to study the puzzling problem of critical field in magnesium diboride thin films. The measured critical field values are extremely high (of the order of 50T in the parallel direction at low fluences) and turns out to be rather independent on the experimental resistivity, at least at low fluences. A simple model to explain this phenomenology is presented.
We have developed disk-shaped MgB2 bulk superconducting magnets (20, 30 mm in diameter, 10 mm in thickness) using the in-situ process from Mg and B powders and evaluated the temperature dependence of trapped magnetic field. A pair of two disc-shaped bulks of 30 mm in diameter and 10 mm in thickness magnetized by field-cooling condition showed trapped fields of 1.2, 2.8 and 3.1 T at 30, 20 and 17.5 K, respectively. High trapped field over 3 T was recorded for the first time.
160 MeV Neon ion irradiation has been carried out on MgB2 polycrystalline pellets at various doses. There has not been any significant change in Tc except at the highest dose of 1x10^15 ions/cm^2. Increase in resistivity has been noticed. Resistivity data has been fitted with Bloch-Gruneisen function and the values of Debye temperature, residual resistivity and temperature coefficient of resistivity have been extracted for irradiated as well as unirradiated samples. The increase in the resistivity of irradiated samples has been explained in the light of damage in the 3D pi bonding network of B.
We report synthesis, structure/micro-structure, resistivity under magnetic field [R(T)H], Raman spectra, thermoelectric power S(T), thermal conductivity K(T), and magnetization of ambient pressure argon annealed polycrystalline bulk samples of MgB2, processed under identical conditions. The compound crystallizes in hexagonal structure with space group P6/mmm. Transmission electron microscopy (TEM) reveals electron micrographs showing various types of defect features along with the presence of 3-4nm thick amorphous layers forming the grain boundaries of otherwise crystalline MgB2. Raman spectra of the compound at room temperature exhibited characteristic phonon peak at 600 cm-1. Superconductivity is observed at 37.2K by magnetic susceptibility C(T), resistivity R(T), thermoelectric power S(T), and thermal conductivity K(T) measurements. The power law fitting of R(T) give rise to Debye temperature at 1400K which is found consistent with the theoretical fitting of S(T), exhibiting ThetaD of 1410K and carrier density of 3.81x 1028/m3. Thermal conductivity K(T) shows a jump at 38K, i.e., at Tc, which was missing in some earlier reports. Critical current density (Jc) of up to 105 A/cm2 in 1-2T (Tesla) fields at temperatures (T) of up to 10K is seen from magnetization measurements. The irreversibility field, defined as the field related to merging of M(H) loops is found to be 78, 68 and 42 kOe at 4, 10 and 20K respectively. The superconducting performance parameters viz. irreversibility field (Hirr) and critical current density Jc(H) of the studied MgB2 are improved profoundly with addition of nano-SiC and nano-Diamond. The physical property parameters measured for polycrystalline MgB2 are compared with earlier reports and a consolidated insight of various physical properties is presented.
We have performed microwave measurements on superconducting hot-isostatically- pressed (HIPed) bulk MgB2 using a parallel-plate resonator technique. The high density and strength of the HIPed material allowed preparation of samples with mirror-like s urfaces for microwave measurements. The microwave surface resistance decreased by about 40% at 20 K when the root-mean-square surface roughness was reduced from 220 nm to 110 nm through surface-polishing and ion-milling. The surface resistance was independent of surface microwave magnetic field at least up to 4 Oe and below 30 K. We attribute this behavior, and the overall low surface resistance (~0.8 mOhms at 10 GHz and 20 K), to the high density of our samples and the absence of weak links between grains.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا