ترغب بنشر مسار تعليمي؟ اضغط هنا

Application of the Density Matrix Renormalization Group in momentum space

108   0   0.0 ( 0 )
 نشر من قبل Satoshi Nishimoto
 تاريخ النشر 2001
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the application of the Density Matrix Renormalization Group (DMRG) to the Hubbard model in momentum-space. We treat the one-dimensional models with dispersion relations corresponding to nearest-neighbor hopping and $1/r$ hopping and the two-dimensional model with isotropic nearest-neighbor hopping. By comparing with the exact solutions for both one-dimensional models and with exact diagonalization in two dimensions, we first investigate the convergence of the ground-state energy. We find variational convergence of the energy with the number of states kept for all models and parameter sets. In contrast to the real-space algorithm, the accuracy becomes rapidly worse with increasing interaction and is not significantly better at half filling. We compare the results for different dispersion relations at fixed interaction strength over bandwidth and find that extending the range of the hopping in one dimension has little effect, but that changing the dimensionality from one to two leads to lower accuracy at weak to moderate interaction strength. In the one-dimensional models at half-filling, we also investigate the behavior of the single-particle gap, the dispersion of spinon excitations, and the momentum distribution function. For the single-particle gap, we find that proper extrapolation in the number of states kept is important. For the spinon dispersion, we find that good agreement with the exact forms can be achieved at weak coupling if the large momentum-dependent finite-size effects are taken into account for nearest-neighbor hopping. For the momentum distribution, we compare with various weak-coupling and strong-coupling approximations and discuss the importance of finite-size effects as well as the accuracy of the DMRG.



قيم البحث

اقرأ أيضاً

We develop a variant of the density matrix renormalization group (DMRG) algorithm for two-dimensional cylinders that uses a real space representation along the cylinder and a momentum space representation in the perpendicular direction. The mixed rep resentation allows us to use the momentum around the circumference as a conserved quantity in the DMRG algorithm. Compared with the traditional purely real-space approach, we find a significant speedup in computation time and a considerable reduction in memory usage. Applying the method to the interacting fermionic Hofstadter model, we demonstrate a reduction in computation time by over 20-fold, in addition to a sixfold memory reduction.
We introduce the transcorrelated Density Matrix Renormalization Group (tcDMRG) theory for the efficient approximation of the energy for strongly correlated systems. tcDMRG encodes the wave function as a product of a fixed Jastrow or Gutzwiller correl ator and a matrix product state. The latter is optimized by applying the imaginary-time variant of time-dependent (TD) DMRG to the non-Hermitian transcorrelated Hamiltonian. We demonstrate the efficiency of tcDMRG at the example of the two-dimensional Fermi-Hubbard Hamiltonian, a notoriously difficult target for the DMRG algorithm, for different sizes, occupation numbers, and interaction strengths. We demonstrate fast energy convergence of tcDMRG, which indicates that tcDMRG could increase the efficiency of standard DMRG beyond quasi-monodimensional systems and provides a generally powerful approach toward the dynamic correlation problem of DMRG.
181 - Yingjin Ma , Jing Wen , Haibo Ma 2015
The density-matrix renormalization group (DMRG) method, which can deal with a large active space composed of tens of orbitals, is nowadays widely used as an efficient addition to traditional complete active space (CAS)-based approaches. In this paper , we present the DMRG algorithm with a multi-level (ML) control of the active space based on chemical intuition-based hierarchical orbital ordering, which is called as ML-DMRG with its self-consistent field variant ML-DMRG-SCF. Ground and excited state calculations of H2O, N2, indole, and Cr2 with comparisons to DMRG references using fixed number of kept states (M) illustrate that MLtype DMRG calculations can obtain noticeable efficiency gains. It is also shown that the orbital re-ordering based on hierarchical multiple active subspaces may be beneficial for reducing computational time for not only ML-DMRG calculations but also DMRG ones with fixed M values.
In some cases the state of a quantum system with a large number of subsystems can be approximated efficiently by the density matrix renormalization group, which makes use of redundancies in the description of the state. Here we show that the achievab le efficiency can be much better when performing density matrix renormalization group calculations in the Heisenberg picture, as only the observable of interest but not the entire state is considered. In some non-trivial cases, this approach can even be exact for finite bond dimensions.
512 - Julian Rincon , D. J. Garcia , 2009
A distributed-memory parallelization strategy for the density matrix renormalization group is proposed for cases where correlation functions are required. This new strategy has substantial improvements with respect to previous works. A scalability an alysis shows an overall serial fraction of 9.4% and an efficiency of around 60% considering up to eight nodes. Sources of possible parallel slowdown are pointed out and solutions to circumvent these issues are brought forward in order to achieve a better performance.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا