ترغب بنشر مسار تعليمي؟ اضغط هنا

Anomalous acoustoelectric effect in La_{0.67}Ca_{0.33}MnO_{3} films

103   0   0.0 ( 0 )
 نشر من قبل Konstantin Dyakonov
 تاريخ النشر 2001
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have studied acoustoelectric (AE) effect produced by surface acoustic waves (SAW) in a monolithic layered structure, composed of piezodielectric LiNbO_{3} substrate and La_{0.67}Ca_{0.33}MnO_{3} film. The experiments unexpectedly revealed in the longitudinal AE effect an anomalous contribution, invariant upon reversal of SAW propagation, which coexists with the ordinary (odd in wave vector) effect. The anomalous effect dominates near the metal-insulator transition, while the ordinary effect prevails at high and low temperatures. We show that the anomalous effect is caused by strong modulation of the film conductivity produced by the SAW elastic deformations.



قيم البحث

اقرأ أيضاً

The infrared reflectivity of a $rm La_{0.67}Ca_{0.33}MnO_3$ single crystal is studied over a broad range of temperatures (78-340 K), magnetic fields (0-16 T), and wavenumbers (20-9000 cm$^{-1}$). The optical conductivity gradually changes from a Drud e-like behavior to a broad peak feature near 5000 cm$^{-1}$ in the ferromagnetic state below the Curie temperature $T_C=307 K$. Various features of the optical conductivity bear striking resemblance to recent theoretical predictions based on the interplay between the double exchange interaction and the Jahn-Teller electron-phonon coupling. A large optical magnetoconductivity is observed near $T_C$.
We have resolved a controversial issue concerning the oxygen-isotope shift of the ferromagnetic transition temperature T_{C} in the manganite La_{0.8}Ca_{0.2}MnO_{3+y}. We show that the giant oxygen-isotope shift of T_C observed in the normal oxygen- isotope exchanged samples is indeed intrinsic, while a much smaller shift observed in the argon annealed samples is an artifact. The argon annealing causes the 18O sample to partially exchange back to the 16O isotope due to a small 16O contamination in the Ar gas. Such a contamination is commonly caused by the oxygen outgas that is trapped in the tubes, connectors and valves. The present results thus umambiguously demonstrate that the observed large oxygen isotope effect is an intrinsic property of manganites, and places an important constraint on the basic physics of these materials.
We report the characterization of the crystal structure, low-temperature charge and orbital ordering, transport, and magnetization of Pr_{0.6}Ca_{0.4}MnO_{3} films grown on LaAlO_{3}, NdGaO_{3}, and SrTiO_{3} substrates, which provide compressive (La AlO_{3}) and tensile (NdGaO_{3} and SrTiO_{3}) strain. The films are observed to exhibit different crystallographic symmetries than the bulk material, and the low-temperature ordering is found to be more robust under compressive-- as opposed to tensile-- strain. In fact, bulk-like charge and orbital ordering is not observed in the film grown on NdGaO_{3}, which is the substrate that provides the least amount of nominal and measured, but tensile, strain. This result suggests the importance of the role played by the Mn--O--Mn bond angles in the formation of charge and orbital ordering at low temperatures. Finally, in the film grown on LaAlO_{3}, a connection between the lattice distortion associated with orbital ordering and the onset of antiferromagnetism is reported.
78 - K. H. Kim , M. Uehara , C. Hess 2000
We measured thermal conductivity, k, thermoelectric power, S, and dc electric conductivity, sigma, of La_{5/8-x}Pr_{x}Ca_{3/8}MnO_{3}, showing an intricate interplay between metallic ferromagnetism (FM) and charge ordering (CO) instability. The chang e of k, S and sigma with temperature (T) and x agrees well with the effective medium theories for binary metal-insulator mixtures. This agreement clearly demonstrates that with the variation of T as well as x, the relative volumes of FM and CO phases drastically change and percolative metal-insulator transition occurs in the mixture of FM and CO domains.
In the series La_{2/3-x}Tb_{x}Ca_{1/3}MnO_{3}, it is known that the compositions are ferromagnetic for smaller values of x and show spin glass characteristics at larger values of x. Our studies on the magnetic properties of various compositions in th e La_{2/3-x}Tb_{x}Ca_{1/3}MnO_{3} series show that the cross over from ferromagnetic to spin glass region takes place above x ~ 1/8. Also, a low temperature anomaly at 30 K, observed in the ac susceptibility curves, disappears for compositions above this critical value of x. A mixed phase region coexists in the narrow compositional range 0.1 <= x <= 0.125, indicating that the ferromagnetic to spin glass cross over is not abrupt.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا