ترغب بنشر مسار تعليمي؟ اضغط هنا

Modulation origin of 1/f noise in two-dimensional hopping

83   0   0.0 ( 0 )
 نشر من قبل A. K. Savchenko
 تاريخ النشر 2001
  مجال البحث فيزياء
والبحث باللغة English
 تأليف V.Pokrovskii




اسأل ChatGPT حول البحث

We show that 1/f noise in a two-dimensional electron gas with hopping conduction can be explained by the modulation of conducting paths by fluctuating occupancy of non-conducting states. The noise is sensitive to the structure of the critical hopping network, which is varied by changing electron concentration, sample size and temperature. With increasing temperature, it clearly reveals the crossover between different hopping regimes.



قيم البحث

اقرأ أيضاً

124 - K. Kechedzhi , L. Faoro , 2011
We analyze recent data on the complex inductance of dc SQUIDs that show 1/f inductance noise highly correlated with conventional 1/f flux noise. We argue that these data imply a formation of long range order in fractal spin structures. We show that t hese structures appear naturally in a random system of spins with wide distribution of spin-spin interactions. We perform numerical simulations on the simplest model of this type and show that it exhibits $1/f^{1+zeta}$ magnetization noise with small exponent $zeta$ and reproduces the correlated behavior observed experimentally.
We report the first measurement of 1/f type noise associated with electronic spin transport, using single layer graphene as a prototypical material with a large and tunable Hooge parameter. We identify the presence of two contributions to the measure d spin-dependent noise: contact polarization noise from the ferromagnetic electrodes, which can be filtered out using the cross-correlation method, and the noise originated from the spin relaxation processes. The noise magnitude for spin and charge transport differs by three orders of magnitude, implying different scattering mechanisms for the 1/f fluctuations in the charge and spin transport processes. A modulation of the spin-dependent noise magnitude by changing the spin relaxation length and time indicates that the spin-flip processes dominate the spin-dependent noise.
Two-dimensional electron or hole systems in semiconductors offer the unique opportunity to investigate the physics of strongly interacting fermions. We have measured the 1/f resistance noise of two-dimensional hole systems in high mobility GaAs quant um wells, at densities below that of the metal-insulator transition (MIT) at zero magnetic field. Two techniques voltage and current fluctuations were used. The normalized noise power SR/R2 increases strongly when the hole density or the temperature are decreased. The temperature dependence is steeper at the lowest densities. This contradicts the predictions of the modulation approach in the strong localization hopping transport regime. The hypothesis of a second order phase transition or percolation transition at a density below that of the MIT is thus reinforced.
Magnetic flux noise is a dominant source of dephasing and energy relaxation in superconducting qubits. The noise power spectral density varies with frequency as $1/f^alpha$ with $alpha sim 1$ and spans 13 orders of magnitude. Recent work indicates th at the noise is from unpaired magnetic defects on the surfaces of the superconducting devices. Here, we demonstrate that adsorbed molecular O$_2$ is the dominant contributor to magnetism in superconducting thin films. We show that this magnetism can be suppressed by appropriate surface treatment or improvement in the sample vacuum environment. We observe a suppression of static spin susceptibility by more than an order of magnitude and a suppression of $1/f$ magnetic flux noise power spectral density by more than a factor of 5. These advances open the door to realization of superconducting qubits with improved quantum coherence.
We report on the results of the low-frequency (1/f, where f is frequency) noise measurements in MoS2 field-effect transistors revealing the relative contributions of the MoS2 channel and Ti/Au contacts to the overall noise level. The investigation of the 1/f noise was performed for both as fabricated and aged transistors. It was established that the McWhorter model of the carrier number fluctuations describes well the 1/f noise in MoS2 transistors, in contrast to what is observed in graphene devices. The trap densities extracted from the 1/f noise data for MoS2 transistors, are 1.5 x 10^19 eV-1cm-3 and 2 x 10^20 eV-1cm-3 for the as fabricated and aged devices, respectively. It was found that the increase in the noise level of the aged MoS2 transistors is due to the channel rather than the contact degradation. The obtained results are important for the proposed electronic applications of MoS2 and other van der Waals materials.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا