ﻻ يوجد ملخص باللغة العربية
We show that 1/f noise in a two-dimensional electron gas with hopping conduction can be explained by the modulation of conducting paths by fluctuating occupancy of non-conducting states. The noise is sensitive to the structure of the critical hopping network, which is varied by changing electron concentration, sample size and temperature. With increasing temperature, it clearly reveals the crossover between different hopping regimes.
We analyze recent data on the complex inductance of dc SQUIDs that show 1/f inductance noise highly correlated with conventional 1/f flux noise. We argue that these data imply a formation of long range order in fractal spin structures. We show that t
We report the first measurement of 1/f type noise associated with electronic spin transport, using single layer graphene as a prototypical material with a large and tunable Hooge parameter. We identify the presence of two contributions to the measure
Two-dimensional electron or hole systems in semiconductors offer the unique opportunity to investigate the physics of strongly interacting fermions. We have measured the 1/f resistance noise of two-dimensional hole systems in high mobility GaAs quant
Magnetic flux noise is a dominant source of dephasing and energy relaxation in superconducting qubits. The noise power spectral density varies with frequency as $1/f^alpha$ with $alpha sim 1$ and spans 13 orders of magnitude. Recent work indicates th
We report on the results of the low-frequency (1/f, where f is frequency) noise measurements in MoS2 field-effect transistors revealing the relative contributions of the MoS2 channel and Ti/Au contacts to the overall noise level. The investigation of