ترغب بنشر مسار تعليمي؟ اضغط هنا

Asset-asset interactions and clustering in financial markets

105   0   0.0 ( 0 )
 نشر من قبل Gianaurelio Cuniberti
 تاريخ النشر 2001
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The collective phenomena of a liquid market is characterized in terms of a particle system scenario. This physical analogy enables us to disentangle intrinsic features from purely stochastic ones. The latter are the result of environmental changes due to a `heat bath acting on the many-asset system, quantitatively described in terms of a time dependent effective temperature. The remaining intrinsic properties can be widely investigated by applying standard methods of classical many body systems. As an example, we consider a large set of stocks traded at the NYSE and determine the corresponding asset--asset `interaction potential. In order to investigate in more detail the cluster structure suggested by the short distance behavior of the interaction potential, we perform a connectivity analysis of the spatial distribution of the particle system. In this way, we are able to draw conclusions on the intrinsic cluster persistency independently of the specific market conditions.



قيم البحث

اقرأ أيضاً

73 - R. Mansilla 2001
A new approach to the understanding of complex behavior of financial markets index using tools from thermodynamics and statistical physics is developed. Physical complexity, a magnitude rooted in Kolmogorov-Chaitin theory is applied to binary sequenc es built up from real time series of financial markets indexes. The study is based on NASDAQ and Mexican IPC data. Different behaviors of this magnitude are shown when applied to the intervals of series placed before crashes and to intervals when no financial turbulence is observed. The connection between our results and The Efficient Market Hypothesis is discussed.
We are interested in the existence of equivalent martingale measures and the detection of arbitrage opportunities in markets where several multi-asset derivatives are traded simultaneously. More specifically, we consider a financial market with multi ple traded assets whose marginal risk-neutral distributions are known, and assume that several derivatives written on these assets are traded simultaneously. In this setting, there is a bijection between the existence of an equivalent martingale measure and the existence of a copula that couples these marginals. Using this bijection and recent results on improved Frechet-Hoeffding bounds in the presence of additional information, we derive sufficient conditions for the absence of arbitrage and formulate an optimization problem for the detection of a possible arbitrage opportunity. This problem can be solved efficiently using numerical optimization routines. The most interesting practical outcome is the following: we can construct a financial market where each multi-asset derivative is traded within its own no-arbitrage interval, and yet when considered together an arbitrage opportunity may arise.
This paper investigates whether security markets price the effect of social distancing on firms operations. We document that firms that are more resilient to social distancing significantly outperformed those with lower resilience during the COVID-19 outbreak, even after controlling for the standard risk factors. Similar cross-sectional return differentials already emerged before the COVID-19 crisis: the 2014-19 cumulative return differential between more and less resilient firms is of similar size as during the outbreak, suggesting growing awareness of pandemic risk well in advance of its materialization. Finally, we use stock option prices to infer the markets return expectations after the onset of the pandemic: even at a two-year horizon, stocks of more pandemic-resilient firms are expected to yield significantly lower returns than less resilient ones, reflecting their lower exposure to disaster risk. Hence, going forward, markets appear to price exposure to a new risk factor, namely, pandemic risk.
60 - Didier Sornette 2005
Following a long tradition of physicists who have noticed that the Ising model provides a general background to build realistic models of social interactions, we study a model of financial price dynamics resulting from the collective aggregate decisi ons of agents. This model incorporates imitation, the impact of external news and private information. It has the structure of a dynamical Ising model in which agents have two opinions (buy or sell) with coupling coefficients which evolve in time with a memory of how past news have explained realized market returns. We study t
We predict asset returns and measure risk premia using a prominent technique from artificial intelligence -- deep sequence modeling. Because asset returns often exhibit sequential dependence that may not be effectively captured by conventional time s eries models, sequence modeling offers a promising path with its data-driven approach and superior performance. In this paper, we first overview the development of deep sequence models, introduce their applications in asset pricing, and discuss their advantages and limitations. We then perform a comparative analysis of these methods using data on U.S. equities. We demonstrate how sequence modeling benefits investors in general through incorporating complex historical path dependence, and that Long- and Short-term Memory (LSTM) based models tend to have the best out-of-sample performance.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا