ﻻ يوجد ملخص باللغة العربية
Following a long tradition of physicists who have noticed that the Ising model provides a general background to build realistic models of social interactions, we study a model of financial price dynamics resulting from the collective aggregate decisions of agents. This model incorporates imitation, the impact of external news and private information. It has the structure of a dynamical Ising model in which agents have two opinions (buy or sell) with coupling coefficients which evolve in time with a memory of how past news have explained realized market returns. We study t
A self-organized model with social percolation process is proposed to describe the propagations of information for different trading ways across a social system and the automatic formation of various groups within market traders. Based on the market
A new approach to the understanding of complex behavior of financial markets index using tools from thermodynamics and statistical physics is developed. Physical complexity, a magnitude rooted in Kolmogorov-Chaitin theory is applied to binary sequenc
The Glosten-Milgrom model describes a single asset market, where informed traders interact with a market maker, in the presence of noise traders. We derive an analogy between this financial model and a Szilard information engine by {em i)} showing th
We use standard physics techniques to model trading and price formation in a market under the assumption that order arrival and cancellations are Poisson random processes. This model makes testable predictions for the most basic properties of a marke
Properties of the self-adjusted Monte Carlo algorithm applied to 2d Ising ferromagnet are studied numerically. The endogenous feedback form expressed in terms of the instant running averages is suggested in order to generate a biased random walk of t