ترغب بنشر مسار تعليمي؟ اضغط هنا

Spatially resolved electronic structure inside and outside the vortex core of a high temperature superconductor

53   0   0.0 ( 0 )
 نشر من قبل Vesna Mitrovic
 تاريخ النشر 2001
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

One of the puzzling aspects of high temperature superconductors is the prevalence of magnetism in the normal state and the persistence of superconductivity in very high magnetic fields. Generally, superconductivity and magnetism are not compatible. But recent neutron scattering results indicate that antiferromagnetism can appear deep in the superconducting state in an applied magnetic field. Magnetic fields penetrate a superconductor in the form of quantized flux lines each one representing a vortex of supercurrents. Superconductivity is suppressed in the core of the vortex and it has been suggested that antiferromagnetism might develop there. To address this question it is important to perform electronic structural studies with spatial resolution. Here we report on implementation of a high field NMR imaging experiment that allows spatial resolution of the electronic behavior both inside and outside the vortex cores. Outside we find strong antiferromagnetic fluctuations, and localized inside there are electronic states rather different from those found in conventional superconductors.

قيم البحث

اقرأ أيضاً

The transition-metal-based kagome metals provide a versatile platform for correlated topological phases hosting various electronic instabilities. While superconductivity is rare in layered kagome compounds, its interplay with nontrivial topology coul d offer an engaging space to realize exotic excitations of quasiparticles. Here, we use scanning tunneling microscopy (STM) to study a newly discovered Z$_2$ topological kagome metal CsV$_3$Sb$_5$ with a superconducting ground state. We observe charge modulation associated with the opening of an energy gap near the Fermi level. When across single-unit-cell surface step edges, the intensity of this charge modulation exhibits a {pi}-phase shift, suggesting a three-dimensional 2$times$2$times$2 charge density wave ordering. Interestingly, a robust zero-bias conductance peak is observed inside the superconducting vortex core on the Cs 2$times$2 surfaces that does not split in a large distance when moving away from the vortex center, resembling the Majorana bound states arising from the superconducting Dirac surface states in Bi$_2$Te$_3$/NbSe$_2$ heterostructures. Our findings establish CsV$_3$Sb$_5$ as a promising candidate for realizing exotic excitations at the confluence of nontrivial lattice geometry, topology and multiple electronic orders.
80 - Chang Liu , Takeshi Kondo , Ni Ni 2009
We use angle-resolved photoemission spectroscopy (ARPES) to study the electronic properties of CaFe2As2 - parent compound of a pnictide superconductor. We find that the structural and magnetic transition is accompanied by a three- to two-dimensional (3D-2D) crossover in the electronic structure. Above the transition temperature (Ts) Fermi surfaces around Gamma and X points are cylindrical and quasi-2D. Below Ts the former becomes a 3D ellipsoid, while the latter remains quasi-2D. This finding strongly suggests that low dimensionality plays an important role in understanding the superconducting mechanism in pnictides.
109 - Q. Liu , C. Chen , T. Zhang 2018
The Majorana fermion, which is its own anti-particle and obeys non-abelian statistics, plays a critical role in topological quantum computing. It can be realized as a bound state at zero energy, called a Majorana zero mode (MZM), in the vortex core o f a topological superconductor, or at the ends of a nanowire when both superconductivity and strong spin orbital coupling are present. A MZM can be detected as a zero-bias conductance peak (ZBCP) in tunneling spectroscopy. However, in practice, clean and robust MZMs have not been realized in the vortices of a superconductor, due to contamination from impurity states or other closely-packed Caroli-de Gennes-Matricon (CdGM) states, which hampers further manipulations of Majorana fermions. Here using scanning tunneling spectroscopy, we show that a ZBCP well separated from the other discrete CdGM states exists ubiquitously in the cores of free vortices in the defect free regions of (Li0.84Fe0.16)OHFeSe, which has a superconducting transition temperature of 42 K. Moreover, a Dirac-cone-type surface state is observed by angle-resolved photoemission spectroscopy, and its topological nature is confirmed by band calculations. The observed ZBCP can be naturally attributed to a MZM arising from this chiral topological surface states of a bulk superconductor. (Li0.84Fe0.16)OHFeSe thus provides an ideal platform for studying MZMs and topological quantum computing.
One of the keys to the high-temperature superconductivity puzzle is the identification of the energy scales associated with the emergence of a coherent condensate of superconducting electron pairs. These might provide a measure of the pairing strengt h and of the coherence of the superfluid, and ultimately reveal the nature of the elusive pairing mechanism in the superconducting cuprates. To this end, a great deal of effort has been devoted to investigating the connection between the superconducting transition temperature Tc and the normal-state pseudogap crossover temperature T*. Here we present a review of a large body of experimental data that suggests a coexisting two-gap scenario, i.e. superconducting gap and pseudogap, over the whole superconducting dome.
We present a local probe study of the magnetic superconductor, ErNi$_2$B$_2$C, using magnetic force microscopy at sub-Kelvin temperatures. ErNi$_2$B$_2$C is an ideal system to explore the effects of concomitant superconductivity and ferromagnetism. A t 500 mK, far below the transition to a weakly ferromagnetic state, we directly observe a structured magnetic background on the micrometer scale. We determine spatially resolved absolute values of the magnetic penetration depth $lambda$ and study its temperature dependence as the system undergoes magnetic phase transitions from paramagnetic to antiferromagnetic, and to weak ferromagnetic, all within the superconducting regime. In addition, we estimate the absolute pinning force of Abrikosov vortices, which shows a position- and temperature dependence as well, and discuss the possibility of the purported spontaneous vortex formation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا