ترغب بنشر مسار تعليمي؟ اضغط هنا

Robust and clean Majorana zero mode in the vortex core of high-temperature superconductor (Li0.84Fe0.16)OHFeSe

110   0   0.0 ( 0 )
 نشر من قبل Tong Zhang
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Majorana fermion, which is its own anti-particle and obeys non-abelian statistics, plays a critical role in topological quantum computing. It can be realized as a bound state at zero energy, called a Majorana zero mode (MZM), in the vortex core of a topological superconductor, or at the ends of a nanowire when both superconductivity and strong spin orbital coupling are present. A MZM can be detected as a zero-bias conductance peak (ZBCP) in tunneling spectroscopy. However, in practice, clean and robust MZMs have not been realized in the vortices of a superconductor, due to contamination from impurity states or other closely-packed Caroli-de Gennes-Matricon (CdGM) states, which hampers further manipulations of Majorana fermions. Here using scanning tunneling spectroscopy, we show that a ZBCP well separated from the other discrete CdGM states exists ubiquitously in the cores of free vortices in the defect free regions of (Li0.84Fe0.16)OHFeSe, which has a superconducting transition temperature of 42 K. Moreover, a Dirac-cone-type surface state is observed by angle-resolved photoemission spectroscopy, and its topological nature is confirmed by band calculations. The observed ZBCP can be naturally attributed to a MZM arising from this chiral topological surface states of a bulk superconductor. (Li0.84Fe0.16)OHFeSe thus provides an ideal platform for studying MZMs and topological quantum computing.



قيم البحث

اقرأ أيضاً

98 - C. Chen , Q. Liu , T. Z. Zhang 2019
The Majorana zero mode (MZM), which manifests as an exotic neutral excitation in superconductors, is the building block of topological quantum computing. It has recently been found in the vortices of several iron-based superconductors as a zero-bias conductance peak (ZBCP) in tunneling spectroscopy. In particular, a clean and robust MZM has been observed in the cores of free vortices in (Li0.84Fe0.16)OHFeSe. Here using scanning tunneling spectroscopy (STS), we demonstrate that Majorana-induced resonant Andreev reflection occurs between the STM tip and this zero-bias bound state, and consequently, the conductance at zero bias is quantized as 2e2/h. Our results present a hallmark signature of the MZM in the vortex of an intrinsic topological superconductor, together with its intriguing behavior.
327 - Lingyuan Kong , Hong Ding 2021
The vortex of iron-based superconductors is emerging as a promising platform for Majorana zero mode, owing to a magic integration among intrinsic vortex winding, non-trivial band topology, strong electron-electron correlations, high-Tc superconductiv ity and the simplification of single material. It overcomes many difficulties suffered in heterostructure-based Majorana platforms, including small topological gap, interfacial contamination, lattice imperfections, and etc. Isolated zero-bias peaks have been found in vortex of several iron-based superconductors. So far, studies from both experimental and theoretical aspects strongly indicate the realization of vortex Majorana zero mode, with a potential to be applied to topological quantum computation. By taking Fe(Te,Se) superconductor as an example, here we review original idea and research progress of Majorana zero modes in this new platform. After introducing the identifications of topological band structure and real zero modes in vortex, we summarize the physics behaviors of vortex Majorana zero modes systematically. Firstly, relying on the behavior of the zero mode wave function and evidence of quasiparticle poisoning, we analyze the mechanism of emergence of vortex Majorana zero modes. Secondly, assisted with some well-established theories, we elaborate the measurements on Majorana symmetry and topological nature of vortex Majorana zero modes. After that, we switch from quantum physics to quantum engineering, and analyze the performance of vortex Majorana zero mode under real circumstances, which may potentially benefit the exploration of practical applications in the future. This review follows the physics properties of vortex Majorana zero modes, especially emphasizes the link between phenomena and mechanisms. It provides a chance to bridge the gap between the well-established theories and the newly discovered iron home of Majoranas.
141 - Lingyuan Kong , Lu Cao , Shiyu Zhu 2020
The recent realization of pristine Majorana zero modes (MZMs) in vortices of iron-based superconductors (FeSCs) provides a promising platform for long-sought-after fault-tolerant quantum computation. A large topological gap between the MZMs and the l owest excitations enabled detailed characterization of vortex MZMs in those materials. Despite those achievements, a practical implementation of topological quantum computation based on MZM braiding remains elusive in this new Majorana platform. Among the most pressing issues are the lack of controllable tuning methods for vortex MZMs and inhomogeneity of the FeSC Majorana compounds that destroys MZMs during the braiding process. Thus, the realization of tunable vortex MZMs in a truly homogeneous compound of stoichiometric composition and with a charge neutral cleavage surface is highly desirable. Here we demonstrate experimentally that the stoichiometric superconductor LiFeAs is a good candidate to overcome these two obstacles. Using scanning tunneling microscopy, we discover that the MZMs, which are absent on the natural surface, can appear in vortices influenced by native impurities. Our detailed analysis and model calculations clarify the mechanism of emergence of MZMs in this material, paving a way towards MZMs tunable by controllable methods such as electrostatic gating. The tunability of MZMs in this homogeneous material offers an unprecedented platform to manipulate and braid MZMs, the essential ingredients for topological quantum computation.
Majorana fermions have been intensively studied in recent years for their importance to both fundamental science and potential applications in topological quantum computing1,2. Majorana fermions are predicted to exist in a vortex core of superconduct ing topological insulators3. However, they are extremely difficult to be distinguished experimentally from other quasiparticle states for the tiny energy difference between Majorana fermions and these states, which is beyond the energy resolution of most available techniques. Here, we overcome the problem by systematically investigating the spatial profile of the Majorana mode and the bound quasiparticle states within a vortex in Bi2Te3/NbSe2. While the zero bias peak in local conductance splits right off the vortex center in conventional superconductors, it splits off at a finite distance ~20nm away from the vortex center in Bi2Te3/NbSe2, primarily due to the Majorana fermion zero mode. While the Majorana mode is destroyed by reducing the distance between vortices, the zero bias peak splits as a conventional superconductor again. This work provides strong evidences of Majorana fermions and also suggests a possible route to manipulating them.
The mechanism of high temperature superconductivity in the iron-based superconductors remains an outstanding issue in condensed matter physics. The electronic structure, in particular the Fermi surface topology, is considered to play an essential rol e in dictating the superconductivity. Recent revelation of distinct electronic structure and possible high temperature superconductivity with a transition temperature Tc above 65 K in the single-layer FeSe films grown on the SrTiO3 substrate provides key information on the roles of Fermi surface topology and interface in inducing or enhancing superconductivity. Here we report high resolution angle-resolved photoemission measurement on the electronic structure and superconducting gap of a novel FeSe-based superconductor, (Li0.84Fe0.16)OHFe0.98Se, with a Tc at 41 K. We find that this single-phase bulk superconductor shows remarkably similar electronic behaviors to that of the superconducting single-layer FeSe/SrTiO3 film in terms of Fermi surface topology, band structure and nearly isotropic superconducting gap without nodes. These observations provide significant insights in understanding high temperature superconductivity in the single-layer FeSe/SrTiO3 film in particular, and the mechanism of superconductivity in the iron-based superconductors in general.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا