ترغب بنشر مسار تعليمي؟ اضغط هنا

Phonon-assisted electronic topological transition in MgB2 under pressure

55   0   0.0 ( 0 )
 نشر من قبل Viktor Struzhkin
 تاريخ النشر 2001
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report measurements of the superconducting critical temperature Tc of polycrystalline MgB2 samples containing isotopically pure (10)B and (11)B under quasi-hydrostatic pressure conditions in He pressure media up to 44 GPa. Measurements to volume compressions V/V_0 ~ 0.82 allow us to observe a kink in the volume dependence of Tc for Mg(10)B2 (at 20 GPa) and Mg(11)B2 (at 15 GPa). The pressure dependence of the E(2g) mode also changes abruptly around 20 GPa for the Mg(10)B2 sample. The anharmonic character of the E(2g) phonon mode and anomalies in Tc pressure dependence are interpreted as the result of a phonon-assisted Lifshitz electronic topological transition.



قيم البحث

اقرأ أيضاً

The electronic structure, Fermi surface and elastic properties of the iso-structural and iso-electronic LaSn$_3$ and YSn$_3$ intermetallic compounds are studied under pressure within the framework of density functional theory including spin-orbit cou pling. The LaSn$_3$ Fermi surface consists of two sheets, of which the second is very complex. Under pressure a third sheet appears around compression $V/V_0=0.94$, while a small topology change in the second sheet is seen at compression $V/V_0=0.90$. This may be in accordance with the anomalous behaviour in the superconducting transition temperature observed in LaSn$_3$, which has been suggested to reflect a Fermi surface topological transition, along with a non-monotonic pressure dependence of the density of states at the Fermi level. The same behavior is not observed in YSn$_3$, the Fermi surface of which already includes three sheets at ambient conditions, and the topology remains unchanged under pressure. The reason for the difference in behaviour between LaSn$_3$ and YSn$_3$ is the role of spin-orbit coupling and the hybridization of La - $4f$ states with the Sn - $p$ states in the vicinity of the Fermi level, which is well explained using the band structure calculation. The elastic constants and related mechanical properties are calculated at ambient as well as at elevated pressures. The elastic constants increase with pressure for both compounds and satisfy the conditions for mechanical stability under pressure.
94 - C. Q. Xu , R. Sankar , W. Zhou 2017
A first-order-like resistivity hysteresis is induced by a subtle structural transition under hydrostatic pressure in the topological nodal-line superconductor PbTaSe$_2$. This structure transition is quickly suppressed to zero at pressure $sim$0.25 G Pa. As a result, superconductivity shows a marked suppression, accompanied with fundamental changes in the magnetoresistance and Hall resistivity, suggesting a Lifshitz transition around $sim$0.25 GPa. The first principles calculations show that the spin-orbit interactions partially gap out the Dirac nodal line around $K$ point in the Brillouin zone upon applying a small pressure, whilst the Dirac states around $H$ point are completely destroyed. The calculations further reveal a second structural phase transition under a pressure as high as $sim$30 GPa, through which a transition from a topologically nontrivial phase to a trivial phase is uncovered, with a superconducting dome emerging under this high-pressure phase.
A rapid and anisotropic modification of the Fermi-surface shape can be associated with abrupt changes in crystalline lattice geometry or in the magnetic state of a material. In this study we show that such an electronic topological transition is at t he basis of the formation of an unusual pressure-induced tetragonal ferromagnetic phase in Fe$_{1.08}$Te. Around 2 GPa, the orthorhombic and incommensurate antiferromagnetic ground-state of Fe$_{1.08}$Te is transformed upon increasing pressure into a tetragonal ferromagnetic state via a conventional first-order transition. On the other hand, an isostructural transition takes place from the paramagnetic high-temperature state into the ferromagnetic phase as a rare case of a `type 0 transformation with anisotropic properties. Electronic-structure calculations in combination with electrical resistivity, magnetization, and x-ray diffraction experiments show that the electronic system of Fe$_{1.08}$Te is instable with respect to profound topological transitions that can drive fundamental changes of the lattice anisotropy and the associated magnetic order.
336 - Z. P. Yin , S. Y. Savrasov , 2006
Linear response methods are applied to identify the increase in electron-phonon coupling in elemental yttrium that is responsible for its high superconducting critical temperature Tc, which reaches nearly 20 K at 115 GPa. While the evolution of the b and structure and density of states is smooth and seemingly modest, there is strong increase in the 4d content of the occupied conduction states under pressure. We find that the transverse mode near the L point of the fcc Brillouin zone, already soft at ambient pressure, becomes unstable (in harmonic approximation) at a relative volume V/Vo=0.60 (P ~ 42 GPa). The coupling to transverse branches is relatively strong at all high symmetry zone boundary points X, K, and L. Coupling to the longitudinal branches is not as strong, but extends over more regions of the Brillouin zone and involves higher frequencies. Evaluation of the electron-phonon spectral function $alpha^2F(omega)$ shows a very strong increase with pressure of coupling in the 2-7 meV range, with a steady increase also in the 7-20 meV range. These results demonstrates strong electron-phonon coupling in this system that can account for the observed range of Tc.
Iron-based compounds (IBS) display a surprising variety of superconducting properties that seems to arise from the strong sensitivity of these systems to tiny details of the lattice structure. In this respect, systems that become superconducting unde r pressure, like CaFe$_2$As$_2$, are of particular interest. Here we report on the first directional point-contact Andreev-reflection spectroscopy (PCARS) measurements on CaFe$_2$As$_2$ crystals under quasi-hydrostatic pressure, and on the interpretation of the results using a 3D model for Andreev reflection combined with ab-initio calculations of the Fermi surface (within the density functional theory) and of the order parameter symmetry (within a random-phase-approximation approach in a ten-orbital model). The almost perfect agreement between PCARS results at different pressures and theoretical predictions highlights the intimate connection between the changes in the lattice structure, a topological transition in the hole-like Fermi surface sheet, and the emergence on the same sheet of an order parameter with a horizontal node line.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا