ﻻ يوجد ملخص باللغة العربية
Iron-based compounds (IBS) display a surprising variety of superconducting properties that seems to arise from the strong sensitivity of these systems to tiny details of the lattice structure. In this respect, systems that become superconducting under pressure, like CaFe$_2$As$_2$, are of particular interest. Here we report on the first directional point-contact Andreev-reflection spectroscopy (PCARS) measurements on CaFe$_2$As$_2$ crystals under quasi-hydrostatic pressure, and on the interpretation of the results using a 3D model for Andreev reflection combined with ab-initio calculations of the Fermi surface (within the density functional theory) and of the order parameter symmetry (within a random-phase-approximation approach in a ten-orbital model). The almost perfect agreement between PCARS results at different pressures and theoretical predictions highlights the intimate connection between the changes in the lattice structure, a topological transition in the hole-like Fermi surface sheet, and the emergence on the same sheet of an order parameter with a horizontal node line.
CaFe$_2$As$_2$ has been synthesized and found to form in the tetragonal, ThCr$_2$Si$_2$ structure with lattice parameters $a = 3.912(68) AA$ and $c = 11.667(45) AA$. Upon cooling through 170 K, CaFe$_2$As$_2$ undergoes a first order, structural phase
A first-order-like resistivity hysteresis is induced by a subtle structural transition under hydrostatic pressure in the topological nodal-line superconductor PbTaSe$_2$. This structure transition is quickly suppressed to zero at pressure $sim$0.25 G
We reexamined the experimental evidences for the possible existence of the superconducting (SC) gap nodes in the three most suspected Fe-pnictide SC compounds: LaFePO, BaFe$_2$(As$_{0.67}$P$_{0.33}$)$_2$, and KFe$_2$As$_2$. We showed that while the $
We report measurements of ac magnetic susceptibility $chi_{ac}$ and de Haas-van Alphen (dHvA) oscillations in KFe$_2$As$_2$ under high pressure up to 24.7 kbar. The pressure dependence of the superconducting transition temperature $T_c$ changes from
The antiferromagnet CaFe$_2$As$_2$ does not become superconducting when subject to ideal hydrostatic pressure conditions, where crystallographic and magnetic states also are well defined. By measuring electrical resistivity and magnetic susceptibilit