ﻻ يوجد ملخص باللغة العربية
Piperazinium Hexachlorodicuprate (PHCC) is shown to be a frustrated quasi-two-dimensional quantum Heisenberg antiferromagnet with a gapped spectrum. Zero-field inelastic neutron scattering and susceptibility and specific heat measurements as a function of applied magnetic field are presented. At T = 1.5 K, the magnetic excitation spectrum is dominated by a single propagating mode with a gap, Delta = 1 meV, and bandwidth of approximately 1.8 meV in the (h0l) plane. The mode has no dispersion along the b* direction indicating that neighboring a-c planes of the triclinic structure are magnetically decoupled. The heat capacity shows a reduction of the gap as a function of applied magnetic field in agreement with a singlet-triplet excitation spectrum. A field-induced ordered phase is observed in heat capacity and magnetic susceptibility measurements for magnetic fields greater than H_c1 approximately equal to 7.5 Tesla. Analysis of the neutron scattering data reveals the important exchange interactions and indicates that some of these are highly frustrated.
The title compound Ba3RuTi2O9 crystallizes with a hexagonal unit cell. It contains layers of edge shared triangular network of Ru4+ (S=1) ions. Magnetic susceptibility chi(T) and heat capacity data show no long range magnetic ordering down to 1.8K. A
We study effects of disorder (randomness) in a 2D square-lattice $S=1/2$ quantum spin system, the $J$-$Q$ model with a 6-spin interaction $Q$ supplementing the Heisenberg exchange $J$. In the absence of disorder the system hosts antiferromagnetic (AF
The interplay of interactions and disorder in two-dimensional (2D) electron systems has actively been studied for decades. The paradigmatic approach involves starting with a clean Fermi liquid and perturbing the system with both disorder and interact
We propose utilizing the Cooper pair to induce magnetic frustration in systems of two-dimensional (2D) magnetic adatom lattices on s-wave superconducting surfaces. The competition between singlet electron correlations and the RKKY coupling is shown t
Magnetic skyrmions are vortex-like topological spin textures often observed to form a triangular-lattice skyrmion crystal in structurally chiral magnets with Dzyaloshinskii-Moriya interaction. Recently $beta$-Mn structure-type Co-Zn-Mn alloys were id