ترغب بنشر مسار تعليمي؟ اضغط هنا

Electronic Structures of Quantum Dots and the Ultimate Resolution of Integers

280   0   0.0 ( 0 )
 نشر من قبل C. G. Bao
 تاريخ النشر 2001
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The orbital angular momentum L as an integer can be ultimately factorized as a product of prime numbers. We show here a close relation between the resolution of L and the classification of quantum states of an N-electron 2-dimensional system. In this scheme, the states are in essence classified into different types according to the m(k)-accessibility, namely the ability to get access to symmetric geometric configurations. The m(k)-accessibility is an universal concept underlying all kinds of 2-dimensional systems with a center. Numerical calculations have been performed to reveal the electronic structures of the states of the dots with 9 and 19 electrons,respectively. This paper supports the Laughlin wave finction and the composite fermion model from the aspect of symmetry.



قيم البحث

اقرأ أيضاً

The authors report that anisotropic confining potentials in laterally-coupled semiconductor quantum dots (QDs) have large impacts in optical transitions and energies of inter-shell collective electronic excitations. The observed anisotropies are reve aled by inelastic light scattering as a function of the in-plane direction of light polarization and can be finely controlled by modifying the geometrical shape of the QDs. These experiments show that the tuning of the QD confinement potential offers a powerful method to manipulate electronic states and far-infrared inter-shell optical transitions in quantum dots.
We present theoretical results concerning inelastic light (Raman) scattering from semiconductor quantum dots. The characteristics of each dot state (whether it is a collective or single-particle excitation, its multipolarity, and its spin) are determ ined independently of the Raman spectrum, in such a way that common beliefs used for level assignments in experimental spectra can be tested. We explore the usefulness of below band gap excitation and an external magnetic field to identify charge and spin excited states of a collective or single-particle nature.
We present here an atomistic theory of the electronic and optical properties of hexagonal InAsP quantum dots in InP nanowires in the wurtzite phase. These self-assembled quantum dots are unique in that their heights, shapes, and diameters are well kn own. Using a combined valence-force-field, tight-binding, and configuration-interaction approach we perform atomistic calculations of single-particle states and excitonic, biexcitonic and trion complexes as well as emission spectra as a function of the quantum dot height, diameter and As versus P concentration. The atomistic tight-binding parameters for InAs and InP in the wurtzite crystal phase were obtained by ab initio methods corrected by empirical band gaps. The low energy electron and hole states form electronic shells similar to parabolic or cylindrical quantum confinement, only weakly affected by hexagonal symmetry and As fluctuations. The relative alignment of the emission lines from excitons, trions and biexcitons agrees with that for InAs/InP dots in the zincblende phase in that biexcitons and positive trions are only weakly bound. The random distribution of As atoms leads to dot-to-dot fluctuations of a few meV for the single-particle states and the spectral lines. Due to the high symmetry of hexagonal InAsP nanowire quantum dots the exciton fine structure splitting is found to be small, of the order a few $mu$eV with significant random fluctuations in accordance with experiments.
We investigate the effects of point charge defects on the single particle electronic structure, emission energies, fine structure splitting and oscillator strengths of excitonic transitions in strained In$_{0.6}$Ga$_{0.4}$As/GaAs and strain-free GaAs /Al$_{0.3}$Ga$_{0.7}$As quantum dots. We find that the charged defects significantly modify the single particle electronic structure and excitonic spectra in both strained and strain-free structures. However, the excitonic fine structure splitting, polarization anisotropy and polarization direction in strained quantum dots remain nearly unaffected, while significant changes are observed for strain-free quantum dots.
Quantum dots are arguably the best interface between matter spin qubits and flying photonic qubits. Using quantum dot devices to produce joint spin-photonic states requires the electronic spin qubits to be stored for extended times. Therefore, the st udy of the coherence of spins of various quantum dot confined charge carriers is important both scientifically and technologically. In this study we report on spin relaxation measurements performed on five different forms of electronic spin qubits confined in the very same quantum dot. In particular, we use all optical techniques to measure the spin relaxation of the confined heavy hole and that of the dark exciton - a long lived electron-heavy hole pair with parallel spins. Our measured results for the spin relaxation of the electron, the heavy-hole, the dark exciton, the negative and the positive trions, in the absence of externally applied magnetic field, are in agreement with a central spin theory which attributes the dephasing of the carriers spin to their hyperfine interactions with the nuclear spins of the atoms forming the quantum dots. We demonstrate that the heavy hole dephases much slower than the electron. We also show, both experimentally and theoretically, that the dark exciton dephases slower than the heavy hole, due to the electron-hole exchange interaction, which partially protects its spin state from dephasing.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا