ترغب بنشر مسار تعليمي؟ اضغط هنا

Symmetry and Temperature dependence of the Order parameter in MgB2 from point contact measurements

62   0   0.0 ( 0 )
 نشر من قبل Amir Kohen
 تاريخ النشر 2001
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have performed differential conductance versus voltage measurements of Au/MgB2 point contacts. We find that the dominant component in the conductance is due to Andreev reflection. The results are fitted to the theoretical model of BTK for an s-wave symmetry from which we extract the value of the order parameter (Delta) and its temperature dependence. From our results we also obtain a lower experimental bound on the Fermi velocity in MgB2.



قيم البحث

اقرأ أيضاً

We have performed a detailed study of the conductance characteristics obtained by point contact junctions realized between a normal Pt/Ir tip and syntered RuSr2GdCu2O8 (Ru-1212) samples. Indeed, this compound is subject of great interest due to the c oexistence of both magnetic order and bulk superconductivity. In our experiments, the low temperature tunneling spectra reproducibly show a zero bias conductance peak that can be well reproduced by a generalized BTK model in the case of d-wave symmetry of the superconducting order parameter.
A model of charged hole-pair bosons, with long range Coulomb interactions and very weak interlayer coupling, is used to calculate the order parameter -Phi- of underdoped cuprates. Model parameters are extracted from experimental superfluid densities and plasma frequencies. The temperature dependence -Phi(T)- is characterized by a trapezoidal shape. At low temperatures, it declines slowly due to harmonic phase fluctuations which are suppressed by anisotropic plasma gaps. Above the single layer Berezinski-Kosterlitz-Thouless (BKT) temperature, Phi(T) falls rapidly toward the three dimensional transition temperature. The theoretical curves are compared to c-axis superfluid density data by H. Kitano et al., (J. Low Temp. Phys. 117, 1241 (1999)) and to the -transverse nodal velocity- measured by angular resolved photoemmission spectra on BSCCO samples by W.S. Lee et al., (Nature 450, 81 (2007)), and by A. Kanigel, et al., (Phys. Rev. Lett. 99, 157001 (2007)).
We report on the results of directional point-contact Andreev-reflection (PCAR) measurements in Ba(Fe_{1-x}Co_x)2As2 single crystals and epitaxial c-axis oriented films with x = 0.08 as well as in Ca(Fe_{1-x}Co_x)2As2 single crystals with x = 0.06. T he PCAR spectra are analyzed within the two-band 3D version of the Blonder-Tinkham-Klapwijk model for Andreev reflection we recently developed, and that makes use of an analytical expression for the Fermi surface that mimics the one calculated within the density-functional theory (DFT). The spectra in Ca(Fe_{0.94}Co_{0.06})2As2 unambiguously demonstrate the presence of nodes or zeros in the small gap. In Ba(Fe_{0.92}Co_{0.08})2As2, the ab-plane spectra in single crystals can be fitted by assuming two nodeless gaps, but this model fails to fit the c-axis ones in epitaxial films. All these results are discussed in comparison with recent theoretical predictions about the occurrence of accidental 3D nodes and the presence of hot spots in the gaps of 122 compounds.
We have observed a strongly broadened Raman band of MgB2 that shows anomalously large pressure dependence of its frequency. This band and its pressure dependence can be interpreted as the E2g zone center phonon, which is strongly anharmonic because o f coupling to electronic excitations. The pressure dependence of Tc was measured to 14 GPa in hydrostatic conditions and can be explained only when a substantial pressure dependence of the Hopfield parameter h=N(0)<I2>~(V0/V)^2.3(6)is taken into account.
276 - R. A. Klemm , C. T. Rieck , 1998
The symmetry operations of the crystal groups relevant for the high temperature superconductors HgBa2CuO4+x (Hg1201), YBa2Cu3O7-x (YBCO), and Bi2Sr2CaCu2O8+x (BSCCO) are elucidated. The allowable combinations of the superconducting order parameter (OP) components are presented for both the angular momentum and lattice representations. For tetragonal Hg1201, the spin singlet OP components are composed from four sets of compatible basis functions, which combine to give the generalized s-, dx2-y2-, dxy-, and gxy(x2-y2)- wave OPs. In YBCO, elements of s- and dx2-y2- wave sets are compatible, but in BSCCO, elements of s- and dxy- wave sets are compatible. The Josephson critical current density JcJ across c-axis twist junctions in the vicinity of Tc is then evaluated as a function of the twist angle phi0, for each allowable OP combination, for both coherent and incoherent tunneling. Recent experiments of Li et al. demonstrated the independence of JcJ(phi0)/JcS upon phi0 at and below Tc, where JcS is the critical current density of a constituent single crystal. These experiments are shown to be consistent with an OP containing an s-wave component, but inconsistent with an OP containing the purported dx2-y2-wave component. In addition, they demonstrate that the interlayer tunneling across untwisted layers in single crystal BSCCO is entirely incoherent. We propose a new type of tricrystal experiment using single crystal c-axis twist junctions, that does not employ substrate grain boundaries.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا