ﻻ يوجد ملخص باللغة العربية
The task of accurately locating fluid phase boundaries by means of computer simulation is hampered by problems associated with sampling both coexisting phases in a single simulation run. We explain the physical background to these problems and describe how they can be tackled using a synthesis of biased Monte Carlo sampling and histogram extrapolation methods, married to a standard fluid simulation algorithm. It is demonstrated that the combined approach provides a powerful method for tracing fluid phase boundaries.
We show that near a second order phase transition in a two-component elastic medium of size L in two dimensions, where the local elastic deformation-order parameter couplings can break the inversion symmetry of the order parameter, the elastic moduli
We simulate the motion of spherical particles in a phase-separating binary mixture. By combining cell dynamical equations with Langevin dynamics for particles, we show that the addition of hard particles significantly changes both the speed and the m
Driven diffusive systems constitute paradigmatic models of nonequilibrium physics. Among them, a driven lattice gas known as the asymmetric simple exclusion process (ASEP) is the most prominent example for which many intriguing exact results have bee
We consider the phase diagram of self-avoiding walks (SAW) on the simple cubic lattice subject to surface and bulk interactions, modeling an adsorbing surface and variable solvent quality for a polymer in dilute solution, respectively. We simulate SA
We consider the thermodynamic behavior of local fluctuations occurring in a stable or metastable bulk phase. For a system with three or more phases, a simple analysis based on classical nucleation theory predicts that small fluctuations always resemb