ﻻ يوجد ملخص باللغة العربية
We use a simple real-space renormalization group approach to investigate the critical behavior of the quantum Ashkin-Teller model, a one-dimensional quantum spin chain possessing a line of criticality along which critical exponents vary continuously. This approach, which is based on exploiting the on-site symmetry of the model, has been shown to be surprisingly accurate for predicting some aspects of the critical behavior of the Ising model. Our investigation explores this approach in more generality, in a model where the critical behavior has a richer structure but which reduces to the simpler Ising case at a special point. We demonstrate that the correlation length critical exponent as predicted from this real-space renormalization group approach is in broad agreement with the corresponding results from conformal field theory along the line of criticality. Near the Ising special point, the error in the estimated critical exponent from this simple method is comparable to that of numerically-intensive simulations based on much more sophisticated methods, although the accuracy decreases away from the decoupled Ising model point.
The two-dimensional ferromagnetic anisotropic Ashkin-Teller model is investigated through a real-space renormalization-group approach. The critical frontier, separating five distinct phases, recover all the known exacts results for the square lattice
We have investigated the three-color Ashkin-Teller model (3AT), on the Wheatstone bridge hierarchical lattice, by means of a Migdal-Kadanoff renormalization group approach. We have obtained the exact recursion relations for the renormalized couplings
The universal critical point ratio $Q$ is exploited to determine positions of the critical Ising transition lines on the phase diagram of the Ashkin-Teller (AT) model on the square lattice. A leading-order expansion of the ratio $Q$ in the presence o
The thermodynamic and retrieval properties of the Ashkin-Teller neural network model storing an infinite number of patterns are examined in the replica-symmetric mean-field approximation. In particular, for linked patterns temperature-capacity phase
We consider two critical semi-infinite subsystems with different critical exponents and couple them through their surfaces. The critical behavior at the interface, influenced by the critical fluctuations of the two subsystems, can be quite rich. In o