ﻻ يوجد ملخص باللغة العربية
We measure magnetization changes in a single crystal of the single-molecule magnet Fe8 when exposed to intense, short (<20 $mu$s) pulses of microwave radiation resonant with the m = 10 to 9 transition. We find that radiation induces a phonon bottleneck in the system with a time scale of ~5 $mu$s. The phonon bottleneck, in turn, drives the spin dynamics, allowing observation of thermally assisted resonant tunneling between spin states at the 100-ns time scale. Detailed numerical simulations quantitatively reproduce the data and yield a spin-phonon relaxation time of T1 ~ 40 ns.
The low temperature spin dynamics of a Fe8 Single-Molecule Magnet was studied under circularly polarized electromagnetic radiation allowing us to establish clearly photon-assisted tunneling. This effect, while linear at low power, becomes highly non-
We theoretically investigate quantum transport through single-molecule magnet (SMM) junctions with ferromagnetic and normal-metal leads in the sequential regime. The current obtained by means of the rate-equation gives rise to the tunneling anisotrop
We present magnetization measurements on the single molecule magnet Fe8 in the presence of pulsed microwave radiation. A pump-probe technique is used with two microwave pulses with frequencies of 107 GHz and 118 GHz and pulse lengths of several nanos
We show that the nuclear spin dynamics in the single-molecule magnet Mn12-ac below 1 K is governed by quantum tunneling fluctuations of the cluster spins, combined with intercluster nuclear spin diffusion. We also obtain the first experimental proof
W-band ({ u} ca. 94 GHz) electron paramagnetic resonance (EPR) spectroscopy was used for a single-crystal study of a star-shaped Fe3Cr single-molecule magnet (SMM) with crystallographically imposed trigonal symmetry. The high resolution and sensitivi