ﻻ يوجد ملخص باللغة العربية
The use of continuum phase-field models to describe the motion of well-defined interfaces is discussed for a class of phenomena, that includes order/disorder transitions, spinodal decomposition and Ostwald ripening, dendritic growth, and the solidification of eutectic alloys. The projection operator method is used to extract the ``sharp interface limit from phase field models which have interfaces that are diffuse on a length scale $xi$. In particular,phase-field equations are mapped onto sharp interface equations in the limits $xi kappa ll 1$ and $xi v/D ll 1$, where $kappa$ and $v$ are respectively the interface curvature and velocity and $D$ is the diffusion constant in the bulk. The calculations provide one general set of sharp interface equations that incorporate the Gibbs-Thomson condition, the Allen-Cahn equation and the Kardar-Parisi-Zhang equation.
In this paper, we propose and analyze a diffuse interface model for inductionless magnetohydrodynamic fluids. The model couples a convective Cahn-Hilliard equation for the evolution of the interface, the Navier-Stokes system for fluid flow and the po
We formulate a general shape and topology optimization problem in structural optimization by using a phase field approach. This problem is considered in view of well-posedness and we derive optimality conditions. We relate the diffuse interface probl
We consider sharp interface asymptotics for a phase field model of two phase near spherical biomembranes involving a coupling between the local mean curvature and the local composition proposed by the first and second authors. The model is motivated
Motivated by the drying pattern experiment by Yamazaki and Mizuguchi[J. Phys. Soc. Jpn. {bf 69} (2000) 2387], we propose the dynamics of sweeping interface, in which material distributed over a region is swept by a moving interface. A model based on
Minimal models of self-propelled particles with short-range volume exclusion interactions have been shown to exhibit signatures of phase separation. Here I show that the observed interfacial stability and fluctuations in motility-induced phase separa