ترغب بنشر مسار تعليمي؟ اضغط هنا

Analysis of g_2 for the cold-collision frequency shift in the hydrogen condensate experiments

45   0   0.0 ( 0 )
 نشر من قبل Crispin Gardiner
 تاريخ النشر 2000
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We compute an approximate set of longitudinal quasiparticle modes for a hydrogen condensate as produced in the MIT experiments. An expansion in quasiparticles using a simple one-dimensional Bogoliubov picture shows however that at the high temperatures (approx 44muK) and in the very shallow trap employed (omega_z = 2pitimes 10.2Hz) the contribution to the density from the quasiparticles is about 20% of that from the condensate mode, leading to an effective $ g_2(x,x) which varies between 1 and 3 depending on the position in the condensate.



قيم البحث

اقرأ أيضاً

We show that a correct formulation of the cold collision frequency shift for two photon spectroscopy of Bose-condensed and cold non-Bose-condensed hydrogen is consistent with experimental data. Our treatment includes transport and inhomogeneity into the theory of a non-condensed gas, which causes substantial changes in the cold collision frequency shift for the ordinary thermal gas, as a result of the very high frequency (3.9kHz) of transverse trap mode. For the condensed gas, we find substantial corrections arise from the inclusion of quasiparticles, whose number is very large because of the very low frequency (10.2Hz) of the longitudinal trap mode. These two effects together account for the apparent absence of a factor of two between the two possibilities. Our treatment considers only the Doppler-free measurements, but could be extended to Doppler-sensitive measurements. For Bose-condensed hydrogen, we predict a characteristic foot extending into higher detunings than can arise from the condensate alone, as a result of a correct treatment of the statistics of thermal quasiparticles.
We use the dressed atom formalism to calculate the frequency shift in a hydrogen maser induced by applied radiation near the Zeeman frequency, and find excellent agreement with a previous calculation made in the bare atom basis. The maser oscillates on the Delta_F = 1, Delta_m_F = 0 hyperfine transition, while the applied field is swept through the F = 1, Delta_m_F = pm 1 Zeeman resonance. We determine the effect of the applied field on the Zeeman levels using the dressed atom picture, and then calculate the maser frequency shift by coupling the dressed states to the microwave cavity. Qualitatively, the dressed-atom analysis gives a new and simpler physical interpretation of this double resonance process, which has applications in precision hydrogen Zeeman spectroscopy, e.g., in fundamental symmetry tests.
Recently, p-wave cold collisions were shown to dominate the density-dependent shift of the clock transition frequency in a 171Yb optical lattice clock. Here we demonstrate that by operating such a system at the proper excitation fraction, the cold co llision shift is canceled below the 5x10^{-18} fractional frequency level. We report inelastic two-body loss rates for 3P0-3P0 and 1S0-3P0 scattering. We also measure interaction shifts in an unpolarized atomic sample. Collision measurements for this spin-1/2 171Yb system are relevant for high performance optical clocks as well as strongly-interacting systems for quantum information and quantum simulation applications.
Dynamical tunnelling is a quantum phenomenon where a classically forbidden process occurs, that is prohibited not by energy but by another constant of motion. The phenomenon of dynamical tunnelling has been recently observed in a sodium Bose-Einstein condensate. We present a detailed analysis of these experiments using numerical solutions of the three dimensional Gross-Pitaevskii equation and the corresponding Floquet theory. We explore the parameter dependency of the tunnelling oscillations and we move the quantum system towards the classical limit in the experimentally accessible regime.
The hadronic shift in pionic hydrogen has been redetermined to be $epsilon_{1s}=7.086,pm,0.007(stat),pm,0.006(sys)$,eV by X-ray spectroscopy of ground state transitions applying various energy calibration schemes. The experiment was performed at the high-intensity low-energy pion beam of the Paul Scherrer Institut by using the cyclotron trap and an ultimate-resolution Bragg spectrometer with bent crystals.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا