ﻻ يوجد ملخص باللغة العربية
Low-frequency Raman and inelastic neutron scattering of amorphous bis-phenol A polycarbonate is measured at low temperature, and compared. The vibrational density of states and light-vibration coupling coefficient are determined. The frequency dependences of these parameters are explained by propagating vibration modes up to an energy of about 1 meV, and fracton-like modes in more cohesive domains at higher energies. The vibrational dynamics is in agreement with a disorder in the glass, which is principally of bonding or of elasticity instead of density.
We investigate the dielectric response in the glass-electret state of two dipolar glass-forming materials. This unusual polar glassy state of matter is produced when a dipolar liquid is supercooled under the influence of a high electric dc field, whi
The relaxation of the specific heat and the entropy to their equilibrium values is investigated numerically for the three-dimensional Coulomb glass at very low temperatures. The long time relaxation follows a stretched exponential function, $f(t)=f_0
Slow relaxation and aging of the conductance are experimental features of a range of materials, which are collectively known as electron glasses. We report dynamic Monte Carlo simulations of the standard electron glass lattice model. In a non-equilib
We use computer simulation to investigate the topology of the potential energy $V({{bf R}})$ and to search for doublewell potentials (DWP) in a model glass . By a sequence of Newtonian and dissipative dynamics we find different minima of $V({{bf R}})
We study random walks on the dilute hypercube using an exact enumeration Master equation technique, which is much more efficient than Monte Carlo methods for this problem. For each dilution $p$ the form of the relaxation of the memory function $q(t)$