ترغب بنشر مسار تعليمي؟ اضغط هنا

Communication through a Diffusive Medium: Coherence and Capacity

39   0   0.0 ( 0 )
 نشر من قبل Aris L. Moustakas
 تاريخ النشر 2000
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Aris L. Moustakas




اسأل ChatGPT حول البحث

Coherent wave propagation in disordered media gives rise to many fascinating phenomena as diverse as universal conductance fluctuations in mesoscopic metals and speckle patterns in light scattering. Here, the theory of electromagnetic wave propagation in diffusive media is combined with information theory to show how interference affects the information transmission rate between antenna arrays. Nontrivial dependencies of the information capacity on the nature of the antenna arrays are found, such as the dimensionality of the arrays and their direction with respect to the local scattering medium. This approach provides a physical picture for understanding the importance of scattering in the transfer of information through wireless communications.

قيم البحث

اقرأ أيضاً

We investigate spin-orbit torques on magnetization in an insulating ferromagnetic (FM) layer that is brought into a close proximity to a topological insulator (TI). In addition to the well-known field-like spin-orbit torque, we identify an anisotropi c anti-damping-like spin-orbit torque that originates in a diffusive motion of conduction electrons. This diffusive torque is vanishing in the limit of zero momentum (i. e. for spatially homogeneous electric field or current), but may, nevertheless, have a strong effect on spin-torque resonance at finite frequency provided external field is neither parallel nor perpendicular to the TI surface. The required electric field configuration can be created by a grated top gate.
We develop an Effective Medium Theory to study the electrical transport properties of disordered graphene. The theory includes non-linear screening and exchange-correlation effects allowing us to consider experimentally relevant strengths of the Coul omb interaction. Assuming random Coulomb impurities, we calculate the electrical conductivity as a function of gate voltage describing quantitatively the full cross-over from the fluctuations dominated regime around the Dirac point to the large doping regime at high gate voltages. We find that the conductivity at the Dirac point is strongly affected by exchange correlation effects.
We study the construction of programable integrated circuits with the help of disordered Chern insulators (CIs) in this letter. Specifically, the schemes for low dissipation logic devices and connecting wires are proposed. We use the external-gate-in duced step voltage to construct spatially adjustable channels, where these channels take the place of the conventional wires. Our numerical calculation manifests that the external gates can be adopted to program the arbitrary number of wires ($n$-to-$m$ connections). We find that their electron transport is dissipationless and robust against gate voltage fluctuation and disorder strength. Furthermore, seven basic logic gates distinct from the conventional structures are proposed. Our proposal has potential applications in low power integrated circuits and enlightens the building of integrated circuits in topological materials.
86 - G. Pal , W. Apel , 2011
The electronic states of an electrostatically confined cylindrical graphene quantum dot and the electric transport through this device are studied theoretically within the continuum Dirac-equation approximation and compared with numerical results obt ained from a tight-binding lattice description. A spectral gap, which may originate from strain effects, additional adsorbed atoms or substrate-induced sublattice-symmetry breaking, allows for bound and scattering states. As long as the diameter of the dot is much larger than the lattice constant, the results of the continuum and the lattice model are in very good agreement. We also investigate the influence of a sloping dot-potential step, of on-site disorder along the sample edges, of uncorrelated short-range disorder potentials in the bulk, and of random magnetic-fluxes that mimic ripple-disorder. The quantum dots spectral and transport properties depend crucially on the specific type of disorder. In general, the peaks in the density of bound states are broadened but remain sharp only in the case of edge disorder.
We study the time until first occurrence, the first-passage time, of rare density fluctuations in diffusive systems. We approach the problem using a model consisting of many independent random walkers on a lattice. The existence of spatial correlatio ns makes this problem analytically intractable. However, for a mean-field approximation in which the walkers can jump anywhere in the system, we obtain a simple asymptotic form for the mean first-passage time to have a given number k of particles at a distinguished site. We show numerically, and argue heuristically, that for large enough k, the mean-field results give a good approximation for first-passage times for systems with nearest-neighbour dynamics, especially for two and higher spatial dimensions. Finally, we show how the results change when density fluctuations anywhere in the system, rather than at a specific distinguished site, are considered.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا