ترغب بنشر مسار تعليمي؟ اضغط هنا

Spin-torque resonance due to diffusive dynamics at a surface of topological insulator

138   0   0.0 ( 0 )
 نشر من قبل Robert Sokolewicz
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate spin-orbit torques on magnetization in an insulating ferromagnetic (FM) layer that is brought into a close proximity to a topological insulator (TI). In addition to the well-known field-like spin-orbit torque, we identify an anisotropic anti-damping-like spin-orbit torque that originates in a diffusive motion of conduction electrons. This diffusive torque is vanishing in the limit of zero momentum (i. e. for spatially homogeneous electric field or current), but may, nevertheless, have a strong effect on spin-torque resonance at finite frequency provided external field is neither parallel nor perpendicular to the TI surface. The required electric field configuration can be created by a grated top gate.



قيم البحث

اقرأ أيضاً

A realistic tight-binding model is developed and employed to elucidate the resistivity size effect due to steps on Ru thin films. The resistivity of two different film orientations, $(0001)$ and $(1 bar{1}00)$, is computed for transport along a $[1 1 bar{2} 0]$ direction both for smooth surfaces and for surfaces with monolayer-high steps. In the case of smooth films, the systems are also studied using solutions to the Boltzmann transport equation (BTE). Interestingly, the resistivity of $(1 bar{1}00)$ surfaces exhibits a significant size effect even in the absence of surface steps. When monolayer-high steps are spaced $sim 10$ nm apart, the resistivity is shown to increase due to scattering from the steps. However, only a small increase was found which cannot explain the large effect seen in recent experiments with Ru thin films. This highlights the need for further elucidation of the resistivity size effect. Theoretical analysis suggest that films made from materials with a relatively large ballistic conductance per area like Ru should exhibit a reduced resistivity size effect. This result points to Ru as a promising interconnect material. Finally, because a very efficient algorithm for computing resistivity based on the kernel polynomial method (KPM) is used, the approach fulfills a need for realistic models that can span length scales directly relevant to experimental results. The calculations described here include films approaching $5$ nm in thickness, with in-plane distances up to $sim 160$ nm and $3.8times10^{5}$ atomic sites.
118 - Quan Lin , Tianyu Li , Lei Xiao 2021
Disorder and non-Hermiticity dramatically impact the topological and localization properties of a quantum system, giving rise to intriguing quantum states of matter. The rich interplay of disorder, non-Hermiticity, and topology is epitomized by the r ecently proposed non-Hermitian topological Anderson insulator that hosts a plethora of exotic phenomena. Here we experimentally simulate the non-Hermitian topological Anderson insulator using disordered photonic quantum walks, and characterize its localization and topological properties. In particular, we focus on the competition between Anderson localization induced by random disorder, and the non-Hermitian skin effect under which all eigenstates are squeezed toward the boundary. The two distinct localization mechanisms prompt a non-monotonous change in profile of the Lyapunov exponent, which we experimentally reveal through dynamic observables. We then probe the disorder-induced topological phase transitions, and demonstrate their biorthogonal criticality. Our experiment further advances the frontier of synthetic topology in open systems.
We present experimental data and associated theory for correlations in a series of experiments involving repeated Landau-Zener sweeps through the crossing point of a singlet state and a spin aligned triplet state in a GaAs double quantum dot containi ng two conduction electrons, which are loaded in the singlet state before each sweep, and the final spin is recorded after each sweep. The experiments reported here measure correlations on time scales from 4 $mu$s to 2 ms. When the magnetic field is aligned in a direction such that spin-orbit coupling cannot cause spin flips, the correlation spectrum has prominent peaks centered at zero frequency and at the differences of the Larmor frequencies of the nuclei, on top of a frequency-independent background. When the spin-orbit field is relevant, there are additional peaks, centered at the frequencies of the individual species. A theoretical model which neglects the effects of high-frequency charge noise correctly predicts the positions of the observed peaks, and gives a reasonably accurate prediction of the size of the frequency-independent background, but gives peak areas that are larger than the observed areas by a factor of two or more. The observed peak widths are roughly consistent with predictions based on nuclear dephasing times of the order of 60 $mu$s. However, there is extra weight at the lowest observed frequencies, which suggests the existence of residual correlations on the scale of 2 ms. We speculate on the source of these discrepancies.
105 - D. Hsieh , Y. Xia , L. Wray 2011
We report high-resolution spin-resolved photoemission spectroscopy (Spin-ARPES) measurements on the parent compound Sb of the first discovered 3D topological insulator Bi{1-x}Sb{x} [D. Hsieh et al., Nature 452, 970 (2008) Submitted 2007]. By modulati ng the incident photon energy, we are able to map both the bulk and (111) surface band structure, from which we directly demonstrate that the surface bands are spin polarized by the spin-orbit interaction and connect the bulk valence and conduction bands in a topologically non-trivial way. A unique asymmetric Dirac surface state gives rise to a $k$-splitting of its spin polarized electronic channels. These results complement our previously published works on this materials class and re-confirm our discovery of first bulk (3D) topological insulator - topological order in bulk solids. [Invited article for NJP-IOP Focus issue on Topological Insulators]
151 - Su-Yang Xu , Y. Xia , L. A. Wray 2011
The recently discovered three dimensional or bulk topological insulators are expected to exhibit exotic quantum phenomena. It is believed that a trivial insulator can be twisted into a topological state by modulating the spin-orbit interaction or the crystal lattice via odd number of band
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا