ﻻ يوجد ملخص باللغة العربية
The dynamics of vortices in trapped Bose-Einstein condensates are investigated both analytically and numerically. In axially symmetric traps, the critical rotation frequency for the metastability of an isolated vortex coincides with the largest vortex precession frequency (or anomalous mode) in the Bogoliubov excitation spectrum. As the condensate becomes more elongated, the number of anomalous modes increases. The largest frequency of these modes exceeds both the thermodynamic critical frequency and the nucleation frequency at which vortices are created dynamically. Thus, anomalous modes describe not only the critical rotation frequency for creation of the first vortex in an elongated condensate but also the vortex precession in a single-component spherical condensate.
We study stationary clusters of vortices and antivortices in dilute pancake-shaped Bose-Einstein condensates confined in nonrotating harmonic traps. Previous theoretical results on the stability properties of these topologically nontrivial excited st
We explored the dynamics of how a Bose-Einstein condensate collapses and subsequently explodes when the balance of forces governing the size and shape of the condensate is suddenly altered. A condensates equilibrium size and shape is strongly affecte
We observe interlaced square vortex lattices in rotating two-component dilute-gas Bose-Einstein condensates (BEC). After preparing a hexagonal vortex lattice in a single-component BEC in an internal state $|1>$ of $^{87}$Rb atoms, we coherently trans
We have investigated the formation of vortices by rotating the purely magnetic potential confining a Bose-Einstein condensate. We modified the bias field of an axially symmetric TOP trap to create an elliptical potential that rotates in the radial pl
We investigate a small vortex-lattice system of four co-rotating vortices in an atomic Bose--Einstein condensate and find that the vortex dynamics display chaotic behaviour after a system quench introduced by reversing the direction of circulation of