ترغب بنشر مسار تعليمي؟ اضغط هنا

Chaotic few-body vortex dynamics in rotating Bose--Einstein condensates

307   0   0.0 ( 0 )
 نشر من قبل James Schloss Mr.
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate a small vortex-lattice system of four co-rotating vortices in an atomic Bose--Einstein condensate and find that the vortex dynamics display chaotic behaviour after a system quench introduced by reversing the direction of circulation of a single vortex through a phase-imprinting process. By tracking the vortex trajectories and Lyapunov exponent, we show the onset of chaotic dynamics is not immediate, but occurs at later times and is accelerated by the close-approach and separation of all vortices in a scattering event. The techniques we develop could potentially be applied to create locally induced chaotic dynamics in larger lattice systems as a stepping stone to study the role of chaotic events in turbulent vortex dynamics.



قيم البحث

اقرأ أيضاً

Equilibrium vortex formation in rotating binary Bose gases with a rotating frequency higher than the harmonic trapping frequency is investigated theoretically. We consider the system being evaporatively cooled to form condensates and a combined numer ical scheme is applied to ensure the binary system being in an authentic equilibrium state. To keep the system stable against the large centrifugal force of ultrafast rotation, a quartic trapping potential is added to the existing harmonic part. Using the Thomas-Fermi approximation, a critical rotating frequency Omega_c is derived, which characterizes the structure with or without a central density hole. Vortex structures are studied in detail with rotation frequency both above and below ?Omega_c and with respect to the miscible, symmetrically separated, and asymmetrically separated phases in their nonrotating ground-state counterparts.
We observe interlaced square vortex lattices in rotating two-component dilute-gas Bose-Einstein condensates (BEC). After preparing a hexagonal vortex lattice in a single-component BEC in an internal state $|1>$ of $^{87}$Rb atoms, we coherently trans fer a fraction of the superfluid to a different internal state $|2>$. The subsequent evolution of this pseudo-spin-1/2 superfluid towards a state of offset square lattices involves an intriguing interplay of phase-separation and -mixing dynamics, both macroscopically and on the length scale of the vortex cores, and a stage of vortex turbulence. Stability of the square lattice structure is confirmed via the application of shear perturbations, after which the structure relaxes back to the square configuration. We use an interference technique to show the spatial offset between the two vortex lattices. Vortex cores in either component are filled by fluid of the other component, such that the spin-1/2 order parameter forms a Skyrmion lattice.
We study the changes in the spatial distribution of vortices in a rotating Bose-Einstein condensate due to an increasing anisotropy of the trapping potential. Once the rotational symmetry is broken, we find that the vortex system undergoes a rich var iety of structural changes, including the formation of zig-zag and linear configurations. These spatial re-arrangements are well signaled by the change in the behavior of the vortex-pattern eigenmodes against the anisotropy parameter. The existence of such structural changes opens up possibilities for the coherent exploitation of effective many-body systems based on vortex patterns.
Vortex lattices in rapidly rotating Bose--Einstein condensates are systems of topological excitations that arrange themselves into periodic patterns. Here we show how phase-imprinting techniques can be used to create a controllable number of defects in these lattices and examine the resulting dynamics. Even though we describe our system using the mean-field Gross--Pitaevskii theory, the full range of many particle effects among the vortices can be studied. In particular we find the existence of localized vacancies that are quasi-stable over long periods of time, and characterize the effects on the background lattice through use of the orientational correlation function, and Delaunay triangulation.
Based on the two-dimensional mean-field equations for pancake-shaped dipolar Bose-Einstein condensates in a rotating frame with both attractive and repulsive dipole-dipole interaction (DDI) as well as arbitrary polarization angle, we study the profil es of the single vortex state and show how the critical rotational frequency change with the s-wave contact interaction strengths, DDI strengths and the polarization angles. In addition, we find numerically that at the `magic angle $vartheta=arccos(sqrt{3}/3)$, the critical rotational frequency is almost independent of the DDI strength. By numerically solving the dipolar GPE at high rotational speed, we identify different patterns of vortex lattices which strongly depend on the polarization direction. As a result, we undergo a study of vortex lattice structures for the whole regime of polarization direction and find evidence that the vortex lattice orientation tends to be aligned with the direction of the dipoles.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا