ﻻ يوجد ملخص باللغة العربية
We consider the random fluctuations of the free energy in the $p$-spin version of the Sherrington-Kirkpatrick model in the high temperature regime. Using the martingale approach of Comets and Neveu as used in the standard SK model combined with truncation techniques inspired by a recent paper by Talagrand on the $p$-spin version, we prove that (for $p$ even) the random corrections to the free energy are on a scale $N^{-(p-2)/4}$ only, and after proper rescaling converge to a standard Gaussian random variable. This is shown to hold for all values of the inverse temperature, $b$, smaller than a critical $b_p$. We also show that $b_pto sqrt{2ln 2}$ as $puparrow +infty$. Additionally we study the formal $puparrow +infty$ limit of these models, the random energy model. Here we compute the precise limit theorem for the partition function at {it all} temperatures. For $b<sqrt{2ln2}$, fluctuations are found at an {it exponentially small} scale, with two distinct limit laws above and below a second critical value $sqrt{ln 2/2}$: For $b$ up to that value the rescaled fluctuations are Gaussian, while below that there are non-Gaussian fluctuations driven by the Poisson process of the extreme values of the random energies. For $b$ larger than the critical $sqrt{2ln 2}$, the fluctuations of the logarithm of the partition function are on scale one and are expressed in terms of the Poisson process of extremes. At the critical temperature, the partition function divided by its expectation converges to 1/2.
The Sherrington-Kirkpatrick spin-glass model is investigated by means of Monte Carlo simulations employing a combination of the multi-overlap algorithm with parallel tempering methods. We investigate the finite-size scaling behaviour of the free-ener
In a region above the Almeida-Thouless line, where we are able to control the thermodynamic limit of the Sherrington-Kirkpatrick model and to prove replica symmetry, we show that the fluctuations of the overlaps and of the free energy are Gaussian, o
We investigate the fluctuations of the free energy of the $2$-spin spherical Sherrington-Kirkpatrick model at critical temperature $beta_c = 1$. When $beta = 1$ we find asymptotic Gaussian fluctuations with variance $frac{1}{6N^2} log(N)$, confirming
We present an elementary approach to the order of fluctuations for the free energy in the Sherrington-Kirkpatrick mean field spin glass model at and near the critical temperature. It is proved that at the critical temperature the variance of the free
We study the problem of glassy relaxations in the presence of an external field in the highly controlled context of a spin-glass simulation. We consider a small spin glass in three dimensions (specifically, a lattice of size L=8, small enough to be e