ﻻ يوجد ملخص باللغة العربية
This paper assesses the importance of three-body triple dipole interactions for quasi-one dimensional phases of He, Ne, H_2, Ar, Kr and Xe confined within interstitial channels or on the external surfaces of nanotube bundles. We find the substrate-mediated contribution to be substantial: for interstitial H_2 the well depth of the effective pair potential is reduced to approximately one half of its value in free space. We carry out ab initio calculations on linear and equilateral configurations of H_2 trimer and find that overlap interactions do not greatly change the DDD interaction in the linear configuration when the spacing is greater than about 3 A. However, the DDD interaction alone is clearly insufficient for the triangular configurations studied.
Diffusion Monte Carlo calculations on the adsorption of $^4$He in open-ended single walled (10,10) nanotubes are presented. We have found a first order phase transition separating a low density liquid phase in which all $^4$He atoms are adsorbed clos
We present many-body textit{ab initio} calculations of the electronic and optical properties of semiconducting zigzag carbon nanotubes under uniaxial strain. The GW approach is utilized to obtain the quasiparticle bandgaps and is combined with the Be
We calculate the forces acting upon species adsorbed on a single wall carbon nanotube, in the presence of electric currents. We present a self consistent real space Green function method, which enables us to calculate the current induced forces from
Due to its large surface area and strongly attractive potential, a bundle of carbon nanotubes is an ideal substrate material for gas storage. In addition, adsorption in nanotubes can be exploited in order to separate the components of a mixture. In t
Many-body interactions in monolayer transition-metal dichalcogenides are strongly affected by their unique band structure. We study these interactions by measuring the energy shift of neutral excitons (bound electron-hole pairs) in gated WSe$_2$ and