ﻻ يوجد ملخص باللغة العربية
We have simulated energy relaxation and equilibrium dynamics in Coulomb Glasses using the random energy lattice model. We show that in a temperature range where the Coulomb Gap is already well developed, (T=0.03-0.1) the system still relaxes to an equilibrium behavior within the simulation time scale. For all temperatures T, the relaxation is slower than exponential. Analyzing the energy correlations of the system at equilibrium, we find a stretched exponential behavior. We define a time tau_gamma from these stretched exponential correlations, and show that this time corresponds well with the time required to reach equilibrium. From our data it is not possible to determine whether tau_gamma diverges at any finite temperature, indicating a glass transition, or whether this divergence happens at zero temperature. While the time dependence of the system energy can be well fitted by a random walker in a harmonic potential for high temperatures (T=10), this simple model fails to describe the long time scales observed at lower temperatures. Instead we present an interpretation of the configuration space as a structure with fractal properties, and the time evolution as a random walk on this fractal-like structure.
The relaxation of the specific heat and the entropy to their equilibrium values is investigated numerically for the three-dimensional Coulomb glass at very low temperatures. The long time relaxation follows a stretched exponential function, $f(t)=f_0
We propose an atomistic model for correlated particle dynamics in liquids and glasses predicting both slow stretched-exponential relaxation (SER) and fast compressed-exponential relaxation (CER). The model is based on the key concept of elastically i
We study random walks on the dilute hypercube using an exact enumeration Master equation technique, which is much more efficient than Monte Carlo methods for this problem. For each dilution $p$ the form of the relaxation of the memory function $q(t)$
The decay rate of aftershocks has been modeled as a power law since the pioneering work of Omori in the late nineteenth century. Considered the second most fundamental empirical law after the Gutenberg-Richter relationship, the power law paradigm has
This paper is concerned with the connection between the properties of dielectric relaxation and ac (alternating-current) conduction in disordered dielectrics. The discussion is divided between the classical linear-response theory and a self-consisten