ﻻ يوجد ملخص باللغة العربية
We use electronic Raman scattering to study the model single-layer cuprate superconductor HgBa2CuO4+d. In an overdoped sample, we observe a pronounced amplitude enhancement of a high-energy peak related to two-magnon excitations in insulating cuprates upon cooling below the critical temperature Tc. This effect is accompanied by the appearance of the superconducting gap and a pairing peak above the gap in the Raman spectrum, and it can be understood as a consequence of feedback of the Cooper pairing interaction on the high-energy magnetic fluctuations. All of these effects occur already above Tc in two underdoped samples, demonstrating a related feedback mechanism associated with the pseudogap.
For YBa_2Cu_3O_{6+delta} and Bi_2Sr_2CaCu_2O_8 superconductors, electronic Raman scattering from high- and low-energy excitations has been studied in relation to the hole doping level, temperature, and energy of the incident photons. For underdoped s
From measurements of the ^{63}Cu Knight shift (K) and the nuclear spin-lattice relaxation rate (1/T_{1}) under magnetic fields from zero up to 28 T in the slightly overdoped superconductor TlSr_{2}CaCu_{2}O_{6.8} (T_{c}=68 K), we find that the pseudo
Carrier injection performed in oxygen-deficient YBa2Cu3O7(YBCO) hetero-structure junctions exhibited tunable resistance that was entirely different with behaviors of semiconductor devices. Tunable superconductivity in YBCO junctions, increasing over
Large pulsed magnetic fields up to 60 Tesla are used to suppress the contribution of superconducting fluctuations (SCF) to the ab-plane conductivity above Tc in a series of YBa2Cu3O(6+x). These experiments allow us to determine the field Hc(T) and th
In this review article, we show our recent results relating to the undoped (Ce-free) superconductivity in the electron-doped high-Tc cuprates with the so-called T structure. For an introduction, we briefly mention the characteristics of the electron-