ﻻ يوجد ملخص باللغة العربية
The layered quasi-one-dimensional molecular superconductor (TMTSF)$_2$PF$_6$ is a very exotic material with a superconducting order parameter whose ground state symmetry has remained ill-defined. Here we present a pulsed NMR Knight shift (K) study of $^{77}$Se measured simultaneously with transport in pressurized (TMTSF)$_2$PF$_6$. The Knight shift is linearly dependent on the electron spin susceptibility $chi_s$, and is therefore a direct measure of the spin polarization in the superconducting state. For a singlet superconductor, the spin contribution to the Knight shift, K$_s$, falls rapidly on cooling through the transition. The present experiments indicate no observable change in K between the metallic and superconducting states, and thus strongly support the hypothesis of triplet p-wave superconductivity in (TMTSF)$_2$PF$_6$.
Nuclear magnetic resonance (NMR) measurements on the $^{195}$Pt nucleus in an aligned powder of the moderately heavy-fermion material U2PtC2 are consistent with spin-triplet pairing in its superconducting state. Across the superconducting transition
We have studied the temperature dependence of the integer quantum Hall transitions in the molecular crystal (TMTSF)$_2$PF$_6$. We find that the transition width between the quantum Hall plateaus does not exhibit the universal power-law scaling behavi
Superconductivity has its universal origin in the formation of bound (Cooper) pairs of electrons that can move through the lattice without resistance below the superconducting transition temperature Tc[1]. While electron Cooper pairs in most supercon
We present a detailed low-temperature investigation of the statics and dynamics of the anions and methyl groups in the organic conductors (TMTSF)$_2$PF$_6$ and (TMTSF)$_2$AsF$_6$ (TMTSF : tetramethyl-tetraselenafulvalene). The 4 K neutron scattering
Unconventional superconductivity is characterized by the spontaneous symmetry breaking of the macroscopic superconducting wavefunction in addition to the gauge symmetry breaking, such as rotational-symmetry breaking with respect to the underlying cry