ﻻ يوجد ملخص باللغة العربية
Superconductivity has its universal origin in the formation of bound (Cooper) pairs of electrons that can move through the lattice without resistance below the superconducting transition temperature Tc[1]. While electron Cooper pairs in most superconductors form anti-parallel spin-singlets with total spin S=0 [2,3], they can also form parallel spin-triplet Cooper pairs with S=1 and an odd parity wavefunction[4-6], analogous to the equal spin pairing state in the superfluid 3He[7]. Spin-triplet pairing is important because it can host topological states and Majorana fermions relevant for fault tolerant quantum computation[8-11]. However, spin-triplet pairing is rare and has not been unambiguously identified in any solid state systems. Since spin-triplet pairing is usually mediated by ferromagnetic (FM) spin fluctuations[4-6], uranium based heavy-fermion materials near a FM instability are considered ideal candidates for realizing spin-triplet superconductivity[12-14]. Indeed, UTe2, which has a Tc=1.6K [15,16], has been identified as a strong candidate for chiral spin-triplet topological superconductor near a FM instability[15-22], although the system also exhibits antiferromagnetic (AF) spin fluctuations[23,24]. Here we use inelastic neutron scattering (INS) to show that superconductivity in UTe2 is coupled with a sharp magnetic excitation at the Brillouin zone (BZ) boundary near AF order, analogous to the resonance seen in high-Tc copper oxide[25-27], iron-based[28,29], and heavy-fermion superconductors[30-32]. We find that the resonance in UTe2 occurs below Tc at an energy Er=7.9kBTc (kB is Boltzmanns constant) and at the expense of low-energy spin fluctuations. Since the resonance has only been found in spin-singlet superconductors near an AF instability[25-32], its discovery in UTe2 suggests that AF spin fluctuations can also induce spin-triplet pairing for superconductivity[33].
Nuclear magnetic resonance (NMR) measurements on the $^{195}$Pt nucleus in an aligned powder of the moderately heavy-fermion material U2PtC2 are consistent with spin-triplet pairing in its superconducting state. Across the superconducting transition
Spin-triplet superconductors are of extensive current interest because they can host topological state and Majorana ferimons important for quantum computation. The uranium based heavyfermion superconductor UTe$_2$ has been argued as a spin-triplet su
Identification of pairing mechanisms leading to the unconventional superconductivity realized in copper-oxide, heavy-fermions, and organic compounds is one of the most challenging issues in condensed-matter physics. Clear evidence for an electron-pho
We report neutron scattering measurements of single-crystalline YFe$_2$Ge$_2$ in the normal state, which has the same crystal structure to the 122 family of iron pnictide superconductors. YFe$_2$Ge$_2$ does not exhibit long range magnetic order, but
This review presents a summary and evaluations of the superconducting properties of the layered ruthenate Sr2RuO4 as they are known in the autumn of 2011. This paper appends the main progress that has been made since the preceding review by Mackenzie