ﻻ يوجد ملخص باللغة العربية
We work out a theory of shot noise in a special case. This is a noise of the Coulomb drag current excited under the ballistic transport regime in a one-dimensional nanowire by a ballistic non-Ohmic current in a nearby parallel nanowire. We predict sharp oscillation of the noise power as a function of gate voltage or the chemical potential of electrons. We also study dependence of the noise on the voltage V across the driving wire. For relatively large values of V the noise power is proportional to V^2.
We observe the suppression of the finite frequency shot-noise produced by a voltage biased tunnel junction due to its interaction with a single electromagnetic mode of high impedance. The tunnel junction is embedded in a quarter wavelength resonator
We consider the fluctuations of the electrical current (shot noise) in the presence of a voltage time-modulation. For a non-interacting metal, it is known that the derivative of the photo-assisted noise has a staircase behavior. In the presence of Co
We report the theoretical investigation of noise spectrum of spin current and spin transfer torque for non-colinear spin polarized transport in a spin-valve device which consists of normal scattering region connected by two ferromagnetic electrodes.
Recent years have seen a surge of interest in studies of hydrodynamic transport in electronic systems. We investigate the electron viscosity of metals and find a new component that is closely related to Coulomb drag. Using the linear response theory,
Using a novel structure, consisting of two, independently contacted graphene single layers separated by an ultra-thin dielectric, we experimentally measure the Coulomb drag of massless fermions in graphene. At temperatures higher than 50 K, the Coulo