ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamical Coulomb Blockade of Shot Noise

114   0   0.0 ( 0 )
 نشر من قبل Fabien Portier
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We observe the suppression of the finite frequency shot-noise produced by a voltage biased tunnel junction due to its interaction with a single electromagnetic mode of high impedance. The tunnel junction is embedded in a quarter wavelength resonator containing a dense SQUID array providing it with a characteristic impedance in the kOhms range and a resonant frequency tunable in the 4-6 GHz range. Such high impedance gives rise to a sizeable Coulomb blockade on the tunnel junction (roughly 30% reduction in the differential conductance) and allows an efficient measurement of the spectral density of the current fluctuations at the resonator frequency. The observed blockade of shot-noise is found in agreement with an extension of the dynamical Coulomb blockade theory.


قيم البحث

اقرأ أيضاً

We work out a theory of shot noise in a special case. This is a noise of the Coulomb drag current excited under the ballistic transport regime in a one-dimensional nanowire by a ballistic non-Ohmic current in a nearby parallel nanowire. We predict sh arp oscillation of the noise power as a function of gate voltage or the chemical potential of electrons. We also study dependence of the noise on the voltage V across the driving wire. For relatively large values of V the noise power is proportional to V^2.
78 - H. Duprez , F. Pierre , E. Sivre 2021
We observe and comprehend the dynamical Coulomb blockade suppression of the electrical conductance across an electronic quantum channel submitted to a temperature difference. A broadly tunable, spin-polarized Ga(Al)As quantum channel is connected on- chip, through a micron-scale metallic node, to a linear $RC$ circuit. The latter is made up of the nodes geometrical capacitance $C$ in parallel with an adjustable resistance $Rin {1/2,1/3,1/4}times h/e^2$ formed by 2--4 quantum Hall channels. The system is characterized by three temperatures: a temperature of the electrons in the large electrodes ($T$) and in the node ($T_mathrm{node}$), and a temperature of the electromagnetic modes of the $RC$ circuit ($T_mathrm{env}$). The temperature in the node is selectively increased by local Joule dissipation, and characterized from current fluctuations. For a quantum channel in the tunnel regime, a close match is found between conductance measurements and tunnel dynamical Coulomb blockade theory. In the opposite near ballistic regime, we develop a theory that accounts for different electronic and electromagnetic bath temperatures, again in very good agreement with experimental data. Beyond these regimes, for an arbitrary quantum channel set in the far out-of-equilibrium situation where the temperature in the node significantly exceeds the one in the large electrodes, the equilibrium (uniform temperature) prediction for the conductance is recovered, albeit at a rescaled temperature $alpha T_mathrm{node}$.
Electrical contacts between nano-engineered systems are expected to constitute the basic building blocks of future nano-scale electronics. However, the accurate characterization and understanding of electrical contacts at the nano-scale is an experim entally challenging task. Here we employ low-temperature scanning tunneling spectroscopy to investigate the conductance of individual nano-contacts formed between flat Pb islands and their supporting substrates. We observe a suppression of the differential tunnel conductance at small bias voltages due to dynamical Coulomb blockade effects. The differential conductance spectra allow us to determine the capacitances and resistances of the electrical contacts which depend systematically on the island--substrate contact area. Calculations based on the theory of environmentally assisted tunneling agree well with the measurements.
We consider the fluctuations of the electrical current (shot noise) in the presence of a voltage time-modulation. For a non-interacting metal, it is known that the derivative of the photo-assisted noise has a staircase behavior. In the presence of Co ulomb interactions, we show that the photo-assisted noise presents a more complex profile, in particular for the two following systems: 1) a two-dimensional electron gas in the fractional quantum Hall regime for which we have obtained evenly spaced singularities in the noise derivative, with a spacing related to the filling factor and, 2) a carbon nanotube for which a smoothed staircase in the noise derivative is obtained.
Quantum fluctuations are imprinted with valuable information about transport processes. Experimental access to this information is possible, but challenging. We introduce the dynamical Coulomb blockade (DCB) as a local probe for fluctuations in a sca nning tunneling microscope (STM) and show that it provides information about the conduction channels. In agreement with theoretical predictions, we find that the DCB disappears in a single-channel junction with increasing transmission following the Fano factor, analogous to what happens with shot noise. Furthermore we demonstrate local differences in the DCB expected from changes in the conduction channel configuration. Our experimental results are complemented by ab initio transport calculations that elucidate the microscopic nature of the conduction channels in our atomic-scale contacts. We conclude that probing the DCB by STM provides a technique complementary to shot noise measurements for locally resolving quantum transport characteristics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا