ترغب بنشر مسار تعليمي؟ اضغط هنا

Deterministic Chaos and the Foundations of the Kinetic Theory of Gases

37   0   0.0 ( 0 )
 نشر من قبل J. R. Dorfman
 تاريخ النشر 1997
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent work in dynamical systems theory has shown that many properties that are associated with irreversible processes in fluids can be understood in terms of the dynamical properties of reversible, Hamiltonian systems. That is, stochastic-like behavior is possible for these systems. Here we review the basic theory for this stochastic-like behavior and show how it may be used to obtain an understanding of irreversible processes in gases and fluids. Recent, closely related, work on the use of kinetic theory to calculate dynamical quantities such as Lyapunov exponents is also discussed.



قيم البحث

اقرأ أيضاً

Recent work has shown the existence of a relativistic effect present in a single component non-equilibrium fluid, corresponding to a heat flux due to an electric field. The treatment in that work was limited to a four-dimensional Minkowksi space-time in which the Boltzmann equation was treated in a special relativistic approach. The more complete framework of general relativity can be introduced to kinetic theory in order to describe transport processes associated to electromagnetic fields. In this context the original Kaluzas formalism is a promising approach. The present work contains a kinetic theory basis for Kaluzas magnetohydrodynamics and gives a novel description for the establishment of thermodynamic forces beyond the special relativistic description.
61 - B. Biswal , C. Dasgupta 2002
A neural network model that exhibits stochastic population bursting is studied by simulation. First return maps of inter-burst intervals exhibit recurrent unstable periodic orbit (UPO)-like trajectories similar to those found in experiments on hippoc ampal slices. Applications of various control methods and surrogate analysis for UPO-detection also yield results similar to those of experiments. Our results question the interpretation of the experimental data as evidence for deterministic chaos and suggest caution in the use of UPO-based methods for detecting determinism in time-series data.
141 - U. Smilansky 1996
New insight into the correspondence between Quantum Chaos and Random Matrix Theory is gained by developing a semiclassical theory for the autocorrelation function of spectral determinants. We study in particular the unitary operators which are the quant
103 - Ingo Piepers 2006
The assumption that complex systems function optimally at the edge of chaos seems applicable to the international system as well. In this paper I argue that the normal chaotic war dynamic of the European international system (1495-1945) was temporari ly (1657-1763) interrupted by a more simplified dynamic, resulting in more intense Great Power wars and in a delay of the reorganization of the international system in the 18th century.
We review the occurrence of the patterns of the onset of chaos in low-dimensional nonlinear dissipative systems in leading topics of condensed matter physics and complex systems of various disciplines. We consider the dynamics associated with the att ractors at period-doubling accumulation points and at tangent bifurcations to describe features of glassy dynamics, critical fluctuations and localization transitions. We recall that trajectories pertaining to the routes to chaos form families of time series that are readily transformed into networks via the Horizontal Visibility algorithm, and this in turn facilitates establish connections between entropy and Renormalization Group properties. We discretize the replicator equation of game theory to observe the onset of chaos in familiar social dilemmas, and also to mimic the evolution of high-dimensional ecological models. We describe an analytical framework of nonlinear mappings that reproduce rank distributions of large classes of data (including Zipfs law). We extend the discussion to point out a common circumstance of drastic contraction of configuration space driven by the attractors of these mappings. We mention the relation of generalized entropy expressions with the dynamics along and at the period doubling, intermittency and quasi-periodic routes to chaos. Finally, we refer to additional natural phenomena in complex systems where these conditions may manifest.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا