ﻻ يوجد ملخص باللغة العربية
Recent work has shown the existence of a relativistic effect present in a single component non-equilibrium fluid, corresponding to a heat flux due to an electric field. The treatment in that work was limited to a four-dimensional Minkowksi space-time in which the Boltzmann equation was treated in a special relativistic approach. The more complete framework of general relativity can be introduced to kinetic theory in order to describe transport processes associated to electromagnetic fields. In this context the original Kaluzas formalism is a promising approach. The present work contains a kinetic theory basis for Kaluzas magnetohydrodynamics and gives a novel description for the establishment of thermodynamic forces beyond the special relativistic description.
The introduction of electromagnetic fields into the Boltzmann equation following a 5D general relativistic approach is considered in order to establish the transport equations for dilute charged fluids in the presence of a weak electromagnetic field.
A five-dimensional treatment of the Boltzmann equation is used to establish the constitutive equations that relate thermodynamic fluxes and forces up to first order in the gradients for simple charged fluids in the presence of electromagnetic fields.
We develop the foundations of an effective-one-body (EOB) model for eccentric binary coalescences that includes the conservative dynamics, radiation reaction, and gravitational waveform modes from the inspiral and the merger-ringdown signals. We use
Recent work in dynamical systems theory has shown that many properties that are associated with irreversible processes in fluids can be understood in terms of the dynamical properties of reversible, Hamiltonian systems. That is, stochastic-like behav
We present a new numerical implementation of the general-relativistic resistive magnetohydrodynamics (MHD) equations within the Whisky code. The numerical method adopted exploits the properties of implicit-explicit Runge-Kutta numerical schemes to tr