ترغب بنشر مسار تعليمي؟ اضغط هنا

A measurement of Omega from the North American test flight of BOOMERANG

422   0   0.0 ( 0 )
 نشر من قبل Philip Mauskopf
 تاريخ النشر 1999
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We use the angular power spectrum of the Cosmic Microwave Background, measured during the North American test flight of the BOOMERANG experiment, to constrain the geometry of the universe. Within the class of Cold Dark Matter models, we find that the overall fractional energy density of the universe, Omega, is constrained to be 0.85 < Omega < 1.25 at the 68% confidence level. Combined with the COBE measurement and the high redshift supernovae data we obtain new constraints on the fractional matter density and the cosmological constant.



قيم البحث

اقرأ أيضاً

We describe a measurement of the angular power spectrum of anisotropies in the Cosmic Microwave Background (CMB) from 0.3 degrees to ~10 degrees from the North American test flight of the BOOMERANG experiment. BOOMERANG is a balloon-borne telescope w ith a bolometric receiver designed to map CMB anisotropies on a Long Duration Balloon flight. During a 6-hour test flight of a prototype system in 1997, we mapped > 200 square degrees at high galactic latitudes in two bands centered at 90 and 150 GHz with a resolution of 26 and 16.6 arcmin FWHM respectively. Analysis of the maps gives a power spectrum with a peak at angular scales of ~1 degree with an amplitude ~70 uK.
We report measurements of the CMB polarization power spectra from the January 2003 Antarctic flight of BOOMERANG. The primary results come from six days of observation of a patch covering 0.22% of the sky centered near R.A. = 82.5 deg., Dec= -45 deg. The observations were made using four pairs of polarization sensitive bolometers operating in bands centered at 145 GHz. Using two independent analysis pipelines, we measure a non-zero <EE> signal in the range 100< l <1000 with a significance 4.8-sigma, a 2-sigma upper limit of 8.6 uK^2 for any <BB> contribution, and a 2-sigma upper limit of 7.0 uK^2 for the <EB> spectrum. Estimates of foreground intensity fluctuations and the non-detection of <BB> and <EB> signals rule out any significant contribution from galactic foregrounds. The results are consistent with a Lambda-CDM cosmology seeded by adiabatic perturbations. We note that this is the first detection of CMB polarization with bolometric detectors.
We present the cosmological parameters from the CMB intensity and polarization power spectra of the 2003 Antarctic flight of the BOOMERANG telescope. The BOOMERANG data alone constrains the parameters of the $Lambda$CDM model remarkably well and is c onsistent with constraints from a multi-experiment combined CMB data set. We add LSS data from the 2dF and SDSS redshift surveys to the combined CMB data set and test several extensions to the standard model including: running of the spectral index, curvature, tensor modes, the effect of massive neutrinos, and an effective equation of state for dark energy. We also include an analysis of constraints to a model which allows a CDM isocurvature admixture.
The anisotropy of the cosmic microwave background radiation contains information about the contents and history of the universe. We report new limits on cosmological parameters derived from the angular power spectrum measured in the first Antarctic f light of the BOOMERANG experiment. Within the framework of inflation-motivated adiabatic cold dark matter models, and using only weakly restrictive prior probabilites on the age of the universe and the Hubble expansion parameter $h$, we find that the curvature is consistent with flat and that the primordial fluctuation spectrum is consistent with scale invariant, in agreement with the basic inflation paradigm. We find that the data prefer a baryon density $Omega_b h^2$ above, though similar to, the estimates from light element abundances and big bang nucleosynthesis. When combined with large scale structure observations, the BOOMERANG data provide clear detections of both dark matter and dark energy contributions to the total energy density $Omega_{rm {tot}}$, independent of data from high redshift supernovae.
178 - F. Jenet , L. S. Finn , J. Lazio 2009
The North American Nanohertz Observatory for Gravitational Waves (NANOGrav) is a consortium of astronomers whose goal is the creation of a galactic scale gravitational wave observatory sensitive to gravitational waves in the nHz-microHz band. It is j ust one component of an international collaboration involving similar organizations of European and Australian astronomers who share the same goal. Gravitational waves, a prediction of Einsteins general theory of relativity, are a phenomenon of dynamical space-time generated by the bulk motion of matter, and the dynamics of space-time itself. They are detectable by the small disturbance they cause in the light travel time between some light source and an observer. NANOGrav exploits radio pulsars as both the light (radio) source and the clock against which the light travel time is measured. In an array of radio pulsars gravitational waves manifest themselves as correlated disturbances in the pulse arrival times. The timing precision of todays best measured pulsars is less than 100 ns. With improved instrumentation and signal-to-noise it is widely believed that the next decade could see a pulsar timing network of 100 pulsars each with better than 100 ns timing precision. Such a pulsar timing array (PTA), observed with a regular cadence of days to weeks, would be capable of observing supermassive black hole binaries following galactic mergers, relic radiation from early universe phenomena such as cosmic strings, cosmic superstrings, or inflation, and more generally providing a vantage on the universe whose revolutionary potential has not been seen in the 400 years since Galileo first turned a telescope to the heavens.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا