ترغب بنشر مسار تعليمي؟ اضغط هنا

Cosmological Parameters from the 2003 flight of BOOMERANG

104   0   0.0 ( 0 )
 نشر من قبل Carlo R. Contaldi
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the cosmological parameters from the CMB intensity and polarization power spectra of the 2003 Antarctic flight of the BOOMERANG telescope. The BOOMERANG data alone constrains the parameters of the $Lambda$CDM model remarkably well and is consistent with constraints from a multi-experiment combined CMB data set. We add LSS data from the 2dF and SDSS redshift surveys to the combined CMB data set and test several extensions to the standard model including: running of the spectral index, curvature, tensor modes, the effect of massive neutrinos, and an effective equation of state for dark energy. We also include an analysis of constraints to a model which allows a CDM isocurvature admixture.

قيم البحث

اقرأ أيضاً

We report measurements of the CMB polarization power spectra from the January 2003 Antarctic flight of BOOMERANG. The primary results come from six days of observation of a patch covering 0.22% of the sky centered near R.A. = 82.5 deg., Dec= -45 deg. The observations were made using four pairs of polarization sensitive bolometers operating in bands centered at 145 GHz. Using two independent analysis pipelines, we measure a non-zero <EE> signal in the range 100< l <1000 with a significance 4.8-sigma, a 2-sigma upper limit of 8.6 uK^2 for any <BB> contribution, and a 2-sigma upper limit of 7.0 uK^2 for the <EB> spectrum. Estimates of foreground intensity fluctuations and the non-detection of <BB> and <EB> signals rule out any significant contribution from galactic foregrounds. The results are consistent with a Lambda-CDM cosmology seeded by adiabatic perturbations. We note that this is the first detection of CMB polarization with bolometric detectors.
The anisotropy of the cosmic microwave background radiation contains information about the contents and history of the universe. We report new limits on cosmological parameters derived from the angular power spectrum measured in the first Antarctic f light of the BOOMERANG experiment. Within the framework of inflation-motivated adiabatic cold dark matter models, and using only weakly restrictive prior probabilites on the age of the universe and the Hubble expansion parameter $h$, we find that the curvature is consistent with flat and that the primordial fluctuation spectrum is consistent with scale invariant, in agreement with the basic inflation paradigm. We find that the data prefer a baryon density $Omega_b h^2$ above, though similar to, the estimates from light element abundances and big bang nucleosynthesis. When combined with large scale structure observations, the BOOMERANG data provide clear detections of both dark matter and dark energy contributions to the total energy density $Omega_{rm {tot}}$, independent of data from high redshift supernovae.
We measure cosmological parameters using the three-dimensional power spectrum P(k) from over 200,000 galaxies in the Sloan Digital Sky Survey (SDSS) in combination with WMAP and other data. Our results are consistent with a ``vanilla flat adiabatic L ambda-CDM model without tilt (n=1), running tilt, tensor modes or massive neutrinos. Adding SDSS information more than halves the WMAP-only error bars on some parameters, tightening 1 sigma constraints on the Hubble parameter from h~0.74+0.18-0.07 to h~0.70+0.04-0.03, on the matter density from Omega_m~0.25+/-0.10 to Omega_m~0.30+/-0.04 (1 sigma) and on neutrino masses from <11 eV to <0.6 eV (95%). SDSS helps even more when dropping prior assumptions about curvature, neutrinos, tensor modes and the equation of state. Our results are in substantial agreement with the joint analysis of WMAP and the 2dF Galaxy Redshift Survey, which is an impressive consistency check with independent redshift survey data and analysis techniques. In this paper, we place particular emphasis on clarifying the physical origin of the constraints, i.e., what we do and do not know when using different data sets and prior assumptions. For instance, dropping the assumption that space is perfectly flat, the WMAP-only constraint on the measured age of the Universe tightens from t0~16.3+2.3-1.8 Gyr to t0~14.1+1.0-0.9 Gyr by adding SDSS and SN Ia data. Including tensors, running tilt, neutrino mass and equation of state in the list of free parameters, many constraints are still quite weak, but future cosmological measurements from SDSS and other sources should allow these to be substantially tightened.
56 - J. L. Sievers 2002
We report on the cosmological parameters derived from observations with the Cosmic Background Imager (CBI), covering 40 square degrees and the multipole range 300 < l < 3500. The angular scales probed by the CBI correspond to structures which cover t he mass range from 10^14 to 10^17 M_sun, and the observations reveal, for the first time, the seeds that gave rise to clusters of galaxies. These unique, high-resolution observations also show damping in the power spectrum to l ~ 2000, which we interpret as due to the finite width of the photon-baryon decoupling region and the viscosity operating at decoupling. Because the observations extend to much higher l the CBI results provide information complementary to that probed by the Boomerang, DASI, Maxima, and VSA experiments. As the observations are pushed to higher multipoles no anomalies relative to standard models appear, and extremely good consistency is found between the cosmological parameters derived for the CBI observations over the range 610 < l < 2000 and observations at lower l [abridged].
We use the angular power spectrum of the Cosmic Microwave Background, measured during the North American test flight of the BOOMERANG experiment, to constrain the geometry of the universe. Within the class of Cold Dark Matter models, we find that the overall fractional energy density of the universe, Omega, is constrained to be 0.85 < Omega < 1.25 at the 68% confidence level. Combined with the COBE measurement and the high redshift supernovae data we obtain new constraints on the fractional matter density and the cosmological constant.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا