ﻻ يوجد ملخص باللغة العربية
Using high resolution N-body simulations with hydrodynamics and star formation, we investigate interactions and the resulting starbursts in galaxies with properties typical of $zsim 3$. We apply spectral population models to produce mock-HST images, and discuss the observed magnitude, color, and morphological appearance of our simulated galaxies in both the rest-UV and rest-visual bands.
Most phenomenological galaxy formation models show a discrepancy between the predicted Tully-Fisher relation and the luminosity function. We show that this is mainly due to overmerging of galaxy haloes, which is inherent in both the Press-Schechter f
We present rest frame mid-infrared spectroscopy of a sample of 13 submillimeter galaxies, obtained using the Infrared Spectrograph (IRS) on board the Spitzer Space Telescope. The sample includes exclusively bright objects from blank fields and cluste
Lyman Break Analogs (LBAs), characterized by high far-UV luminosities and surface brightnesses as detected by GALEX, are intensely star-forming galaxies in the low-redshift universe ($zsim 0.2$), with star formation rates reaching up to 50 times that
Perhaps as many as 10% of high redshift radio galaxy (HzRG; z > 2) candidates that are selected using an Ultra Steep radio Spectrum (USS) criterion fail to show optical emission (continuum, lines) in deep Keck exposures. Their parent objects are only
Observations in the rest frame ultraviolet from various space missions are used to define the nearby starburst regions having the highest surface brightness on scales of several hundred pc. The bright limit is found to be 6x10^-16 ergs/cm^2-s-A-arcse