ترغب بنشر مسار تعليمي؟ اضغط هنا

Modelling galaxy clustering at high redshift

45   0   0.0 ( 0 )
 نشر من قبل Eelco van Kampen
 تاريخ النشر 2000
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Eelco van Kampen




اسأل ChatGPT حول البحث

Most phenomenological galaxy formation models show a discrepancy between the predicted Tully-Fisher relation and the luminosity function. We show that this is mainly due to overmerging of galaxy haloes, which is inherent in both the Press-Schechter formalism and dissipationless N-body simulations. This overmerging problem be circumvented by including a specific galaxy halo formation recipe into an otherwise standard N-body code. Resolving the overmerging also allows us to include models for chemical evolution and starbursts, which improves the match to observational data and renders the modelling more realistic. We use high-redshift clustering data to try and distinguish models which predict similar results at low redshifts for different sets of parameters.

قيم البحث

اقرأ أيضاً

121 - R.S. Somerville 1999
Using high resolution N-body simulations with hydrodynamics and star formation, we investigate interactions and the resulting starbursts in galaxies with properties typical of $zsim 3$. We apply spectral population models to produce mock-HST images, and discuss the observed magnitude, color, and morphological appearance of our simulated galaxies in both the rest-UV and rest-visual bands.
241 - Michiel Reuland 2003
Perhaps as many as 10% of high redshift radio galaxy (HzRG; z > 2) candidates that are selected using an Ultra Steep radio Spectrum (USS) criterion fail to show optical emission (continuum, lines) in deep Keck exposures. Their parent objects are only detected in the near-IR and are probably heavily obscured and/or at very high redshift. To search for signatures of dust and help constrain the nature and redshifts of these ``no-z radio galaxies, we have conducted a program of submillimeter and millimeter observations. Here we report the first results of a detailed study of one of these objects, WN J0305+3525. WN J0305+3525 appears associated with a small group of K ~ 21 - 22 objects and is strongly detected at both 850 micron and 1.25 mm. On the basis of its faint K-band magnitude, spectral energy distribution (SED) and other evidence we estimate that the radio galaxy is probably at a redshift z = 3 +/- 1. This would make WN J0305+3525 a radio-loud Hyper Luminous Infrared Galaxy (LFIR ~ 10^13 Lsun) similar to, but more obscured than, other dusty radio galaxies in this redshift range. This, together with the absence of Lya emission and compact (theta < 1.9) radio structure, suggests that WN J0305+3525 is embedded in a very dense, dusty medium and is probably at an early stage of its formation.
Identifying galaxy clustering at high redshift (i.e. z > 1) is essential to our understanding of the current cosmological model. However, at increasing redshift, clusters evolve considerably in star-formation activity and so are less likely to be ide ntified using the widely-used red sequence method. Here we assess the viability of instead identifying high redshift clustering using actively star-forming galaxies (SMGs associated with over-densities of BzKs/LBGs). We perform both a 2- and 3-D clustering analysis to determine whether or not true (3D) clustering can be identified where only 2D data are available. As expected, we find that 2D clustering signals are weak at best and inferred results are method dependant. In our 3D analysis, we identify 12 SMGs associated with an over-density of galaxies coincident both spatially and in redshift - just 8% of SMGs with known redshifts in our sample. Where an SMG in our target fields lacks a known redshift, their sightline is no more likely to display clustering than blank sky fields; prior redshift information for the SMG is required to identify a true clustering signal. We find that the strength of clustering in the volume around typical SMGs, while identifiable, is not exceptional. However, we identify a small number of highly clustered regions, all associated with an SMG. The most notable of these, surrounding LESSJ033336.8-274401, potentially contains an SMG, a QSO and 36 star-forming galaxies (a > 20sig over-density) all at z~1.8. This region is highly likely to represent an actively star-forming cluster and illustrates the success of using star-forming galaxies to select sites of early clustering. Given the increasing number of deep fields with large volumes of spectroscopy, or high quality and reliable photometric redshifts, this opens a new avenue for cluster identification in the young Universe.
Large-scale surveys over the last years have revealed about 300 QSOs at redshift above 6. Follow-up observations identified surprising properties, such as the very high black hole (BH) masses, spatial correlations with surrounding cold gas of the hos t galaxy, or high CIV-MgII velocity shifts. In particular, the discovery of luminous high-redshift quasars suggests that at least some black holes likely have large masses at birth and grow efficiently. We aim at quantifying quasar pairs at high redshift for a large sample of objects. This provides a new key constraint on a combination of parameters related to the origin and assembly for the most massive black holes: BH formation efficiency and clustering, growth efficiency and relative contribution of BH mergers. We observed 116 spectroscopically confirmed QSOs around redshift 6 with the simultaneous 7-channel imager GROND in order to search for companions. Applying identical colour-colour cuts as for those which led to the spectroscopically confirmed QSO, we perform LePHARE fits to the 26 best QSO pair candidates, and obtained spectroscopic observations for 11 of those. e do not find any QSO pair with a companion brighter than M1450(AB) < -26 mag within our 0.1-3.3 h^-1 cMpc search radius, in contrast to the serendipitous findings in the redshift range 4--5. However, a low fraction of such pairs at this luminosity and redshift is consistent with indications from present-day cosmological-scale galaxy evolution models. In turn, the incidence of L- and T-type brown dwarfs which occupy a similar colour space as z ~ 6 QSOs, is higher than expected, by a factor of 5 and 20, respectively.
160 - Mark Vogelsberger 2019
The James Webb Space Telescop (JWST) promises to revolutionise our understanding of the early Universe, and contrasting its upcoming observations with predictions of the $Lambda$CDM model requires detailed theoretical forecasts. Here, we exploit the large dynamic range of the IllustrisTNG simulation suite, TNG50, TNG100, and TNG300, to derive multi-band galaxy luminosity functions from $z=2$ to $z=10$. We put particular emphasis on the exploration of different dust attenuation models to determine galaxy luminosity functions for the rest-frame ultraviolet (UV), and apparent wide NIRCam bands. Our most detailed dust model is based on continuum Monte Carlo radiative transfer calculations employing observationally calibrated dust properties. This calibration results in constraints on the redshift evolution of the dust attenuation normalisation and dust-to-metal ratios yielding a stronger redshift evolution of the attenuation normalisation compared to most previous theoretical studies. Overall we find good agreement between the rest-frame UV luminosity functions and observational data for all redshifts, also beyond the regimes used for the dust-model calibrations. Furthermore, we also recover the observed high redshift ($z=4-6$) UV luminosity versus stellar mass relation, the H$alpha$ versus star formation rate relation, and the H$alpha$ luminosity function at $z=2$. The bright end ($M_{rm UV}>-19.5$) cumulative galaxy number densities are consistent with observational data. For the F200W NIRCam band, we predict that JWST will detect $sim 80$ ($sim 200$) galaxies with a signal-to-noise ratio of $10$ ($sim 5$) within the NIRCam field of view, $2.2times2.2 ,{rm arcmin}^{2}$, for a total exposure time of $10^5{rm s}$ in the redshift range $z=8 pm 0.5$. These numbers drop to $sim 10$ ($sim 40$) for an exposure time of $10^4{rm s}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا