ﻻ يوجد ملخص باللغة العربية
From an analysis of the spectrum (4000AA to 8800AA) of HD~101584 it is found that most of the neutral and single ionized metallic lines are in emission. The forbidden emission lines of [OI] 6300AA and 6363AA and [CI] 8727AA are detected, which indicate the presence of a very low excitation nebula. The H$alpha$, FeII 6383AA, NaI D$_{1}$, D$_{2}$ lines and the CaII IR triplet lines show P-Cygni profiles indicating a mass outflow. The H$alpha$ line shows many velocity components in the profile. The FeII 6383AA also has almost the same line profile as the H$alpha$ line indicating that they are formed in the same region. From the spectrum synthesis analysis we find the atmospheric parameters to be T$_{eff}$=8500K, log g=1.5, V$_{turb}$=13km~s$^{-1}$ and [Fe/H]=0.0. From an analysis of the absorption lines the photospheric abundances of some of the elements are derived. Carbon and nitrogen are found to be overabundant. From the analysis of Fe emission lines we derived T$_{exi}$=6100K$pm$200 for the emission line region.
Aims: To investigate the first high resolution optical spectrum of the B-type star, LS III +52 24, identified as the optical counterpart of the hot post-AGB candidate IRAS 22023+5249 (I22023). Methods: We carried out detailed identifications of the
We focus here on one particular and poorly studied object, IRAS11472-0800. It is a highly evolved post-Asymptotic Giant Branch (post-AGB) star of spectral type F, with a large infrared excess produced by thermal emission of circumstellar dust. We dep
Some evidences of wind variability and velocity stratification in the extended atmosphere has been found in the spectra of the supergiant V340 Ser (=IRAS 17279$-$1119) taken at the 6-m BTA telescope with a spectral resolution R$ge$60000. The H$alpha$
The optical spectrum of the infrared source IRAS 04296+3429 (optical counterpart-G0 Ia star, V=14.2) was obtained with the echelle spectrometer PFES at the prime focus of the 6 m telescope. We discover emission bands (0,0) and (0,1) of the Swan syste
High-resolution optical spectroscopy was conducted for the metal-poor post-AGB star CC Lyr to determine its chemical abundances and spectral line profiles. Our standard abundance analysis confirms its extremely low metallicity ([Fe/H]<-3.5) and a cle