ﻻ يوجد ملخص باللغة العربية
This paper summarises an investigation of the effects of low amplitude noise and periodic driving on phase space transport in 3-D Hamiltonian systems, a problem directly applicable to systems like galaxies, where such perturbations reflect internal irregularities and.or a surrounding environment. A new diagnsotic tool is exploited to quantify how, over long times, different segments of the same chaotic orbit can exhibit very different amounts of chaos. First passage time experiments are used to study how small perturbations of an individual orbit can dramatically accelerate phase space transport, allowing `sticky chaotic orbits trapped near regular islands to become unstuck on suprisingly short time scales. Small perturbations are also studied in the context of orbit ensembles with the aim of understanding how such irregularities can increase the efficacy of chaotic mixing. For both noise and periodic driving, the effect of the perturbation scales roughly in amplitude. For white noise, the details are unimportant: additive and multiplicative noise tend to have similar effects and the presence or absence of a friction related to the noise by a Fluctuation- Dissipation Theorem is largely irrelevant. Allowing for coloured noise can significantly decrease the efficacy of the perturbation, but only when the autocorrelation time, which vanishes for white noise, becomes so large that t here is little power at frequencies comparable to the natural frequencies of the unperturbed orbit. This suggests strongly that noise-induced extrinsic diffusion, like modulational diffusion associated with periodic driving, is a resonance phenomenon. Potential implications for galaxies are discussed.
This paper summarises a numerical investigation of phase mixing in time-independent Hamiltonian systems that admit a coexistence of regular and chaotic phase space regions, allowing also for low amplitude perturbations idealised as periodic driving,
In most realistic models for quantum chaotic systems, the Hamiltonian matrices in unperturbed bases have a sparse structure. We study correlations in eigenfunctions of such systems and derive explicit expressions for some of the correlation functions
We present a comprehensive account of directed transport in one-dimensional Hamiltonian systems with spatial and temporal periodicity. They can be considered as Hamiltonian ratchets in the sense that ensembles of particles can show directed ballistic
We study numerically joint mixing of salt and colloids by a chaotic velocity field $mathbf{V}$, and how salt inhomogeneities accelerate or delay colloid mixing by inducing a velocity drift $mathbf{V}_{rm dp}$ between colloids and fluid particles as p
Although steady, isotropic Darcy flows are inherently laminar and non-mixing, it is well understood that transient forcing via engineered pumping schemes can induce rapid, chaotic mixing in groundwater. In this study we explore the propensity for suc