ترغب بنشر مسار تعليمي؟ اضغط هنا

The Effects of Gas Dynamics, Cooling, Star Formation, and Numerical Resolution in Simulations of Cluster Formation

39   0   0.0 ( 0 )
 نشر من قبل Geraint Lewis
 تاريخ النشر 1999
  مجال البحث فيزياء
والبحث باللغة English
 تأليف G. F. Lewis




اسأل ChatGPT حول البحث

We present the analysis of a suite of simulations of a Virgo mass galaxy cluster. Undertaken within the framework of standard cold dark matter cosmology, these simulations were performed at differing resolutions and with increasingly complex physical processes, with the goal of identifying the effects of each on the evolution of the cluster. We focus on the cluster at the present epoch and examine properties including the radial distributions of density, temperature, entropy and velocity. We also map `observable projected properties such as the surface mass density, X-ray surface brightness and SZ signature. We identify significant differences between the simulations, which highlights the need for caution when comparing numerical simulations to observations of galaxy clusters. While resolution affects the inner density profile in dark matter simulations, the addition of a gaseous component, especially one that cools and forms stars, affects the entire cluster. We conclude that both resolution and included physical processes play an important role in simulating the formation and evolution of galaxy clusters. Therefore, physical inferences drawn from simulations that do not include a gaseous component that can cool and form stars present a poor representation of reality. (Abridged)

قيم البحث

اقرأ أيضاً

Feedback from photoionisation may dominate on parsec scales in massive star-forming regions. Such feedback may inhibit or enhance the star formation efficiency and sustain or even drive turbulence in the parent molecular cloud. Photoionisation feedba ck may also provide a mechanism for the rapid expulsion of gas from young clusters potentials, often invoked as the main cause of infant mortality. There is currently no agreement, however, with regards to the efficiency of this process and how environment may affect the direction (positive or negative) in which it proceeds. The study of the photoionisation process as part of hydrodynamical simulations is key to understanding these issues, however, due to the computational demand of the problem, crude approximations for the radiation transfer are often employed. We will briefly review some of the most commonly used approximations and discuss their major drawbacks. We will then present the results of detailed tests carried out using the detailed photoionisation code MOCASSIN and the SPH+ionisation code iVINE code, aimed at understanding the error introduced by the simplified photoionisation algorithms. This is particularly relevant as a number of new codes have recently been developed along those lines. We will finally propose a new approach that should allow to efficiently and self-consistently treat the photoionisation problem for complex radiation and density fields.
66 - Jun-Hwan Choi 2009
We investigate the effects of the change of cosmological parameters and star formation (SF) models on the cosmic SF history using cosmological smoothed particle hydrodynamics (SPH) simulations based on the cold dark matter (CDM) model. We vary the co smological parameters within 1-sigma error from the WMAP best-fit parameters, and find that such changes in cosmological parameters mostly affect the amplitude of the cosmic SF history. At high redshift (hereafter high-z), the star formation rate (SFR) is sensitive to the cosmological parameters that control the small-scale power of the primordial power spectrum, while the cosmic matter content becomes important at lower redshifts. We also test two new SF models: 1) the `Pressure model based on the work by Schaye & Dalla Vecchia (2008), and 2) the `Blitz model that takes the effect of molecular hydrogen formation into account, based on the work by Blitz & Rosolowsky (2006). Compared to the previous conventional SF model, the Pressure model reduces the SFR in low-density regions and shows better agreement with the observations of the Kennicutt-Schmidt law. This model also suppresses the early star formation and shifts the peak of the cosmic SF history toward lower redshift, more consistently with the recent observational estimates of cosmic SFR density. The simulations with the new SF model also predict lower global stellar mass densities at high-z, larger populations of low-mass galaxies and a higher gas fraction in high-z galaxies. Our results suggest that there is room left in the model uncertainties to reconcile the discrepancy that was found between the theory and observations of cosmic SF history and stellar mass density. Nevertheless, our simulations still predict higher stellar mass densities than most of the observational estimates.
Recent observational results indicate that the functional shape of the spatially-resolved star formation-molecular gas density relation depends on the spatial scale considered. These results may indicate a fundamental role of sampling effects on scal es that are typically only a few times larger than those of the largest molecular clouds. To investigate the impact of this effect, we construct simple models for the distribution of molecular clouds in a typical star-forming spiral galaxy, and, assuming a power-law relation between SFR and cloud mass, explore a range of input parameters. We confirm that the slope and the scatter of the simulated SFR-molecular gas surface density relation depend on the size of the sub-galactic region considered, due to stochastic sampling of the molecular cloud mass function, and the effect is larger for steeper relations between SFR and molecular gas. There is a general trend for all slope values to tend to ~unity for region sizes larger than 1-2 kpc, irrespective of the input SFR-cloud relation. The region size of 1-2 kpc corresponds to the area where the cloud mass function becomes fully sampled. We quantify the effects of selection biases in data tracing the SFR, either as thresholds (i.e., clouds smaller than a given mass value do not form stars) or backgrounds (e.g., diffuse emission unrelated to current star formation is counted towards the SFR). Apparently discordant observational results are brought into agreement via this simple model, and the comparison of our simulations with data for a few galaxies supports a steep (>1) power law index between SFR and molecular gas.
49 - U. Maio , K. Dolag , B. Ciardi 2007
Cooling is the main process leading to the condensation of gas in the dark matter potential wells and consequently to star and structure formation. In a metal-free environment, the main available coolants are H, He, H$_2$ and HD; once the gas is enri ched with metals, these also become important in defining the cooling properties of the gas. We discuss the implementation in Gadget-2 of molecular and metal cooling at temperatures lower that $rm10^4 K$, following the time dependent properties of the gas and pollution from stellar evolution. We have checked the validity of our scheme comparing the results of some test runs with previous calculations of cosmic abundance evolution and structure formation, finding excellent agreement. We have also investigated the relevance of molecule and metal cooling in some specific cases, finding that inclusion of HD cooling results in a higher clumping factor of the gas at high redshifts, while metal cooling at low temperatures can have a significant impact on the formation and evolution of cold objects.
165 - U. Maio , K. Dolag , B. Ciardi 2007
This submission has been withdrawn by arXiv administrators because it is a duplicate of 0704.2182.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا