ترغب بنشر مسار تعليمي؟ اضغط هنا

Ionisation Feedback in Star and Cluster Formation Simulations

102   0   0.0 ( 0 )
 نشر من قبل Barbara Ercolano Dr
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Feedback from photoionisation may dominate on parsec scales in massive star-forming regions. Such feedback may inhibit or enhance the star formation efficiency and sustain or even drive turbulence in the parent molecular cloud. Photoionisation feedback may also provide a mechanism for the rapid expulsion of gas from young clusters potentials, often invoked as the main cause of infant mortality. There is currently no agreement, however, with regards to the efficiency of this process and how environment may affect the direction (positive or negative) in which it proceeds. The study of the photoionisation process as part of hydrodynamical simulations is key to understanding these issues, however, due to the computational demand of the problem, crude approximations for the radiation transfer are often employed. We will briefly review some of the most commonly used approximations and discuss their major drawbacks. We will then present the results of detailed tests carried out using the detailed photoionisation code MOCASSIN and the SPH+ionisation code iVINE code, aimed at understanding the error introduced by the simplified photoionisation algorithms. This is particularly relevant as a number of new codes have recently been developed along those lines. We will finally propose a new approach that should allow to efficiently and self-consistently treat the photoionisation problem for complex radiation and density fields.

قيم البحث

اقرأ أيضاً

Cosmological simulations of galaxies have typically produced too many stars at early times. We study the global and morphological effects of radiation pressure (RP) in eight pairs of high-resolution cosmological galaxy formation simulations. We find that the additional feedback suppresses star formation globally by a factor of ~2. Despite this reduction, the simulations still overproduce stars by a factor of ~2 with respect to the predictions provided by abundance matching methods for halos more massive than 5E11 Msun/h (Behroozi, Wechsler & Conroy 2013). We also study the morphological impact of radiation pressure on our simulations. In simulations with RP the average number of low mass clumps falls dramatically. Only clumps with stellar masses Mclump/Mdisk <= 5% are impacted by the inclusion of RP, and RP and no-RP clump counts above this range are comparable. The inclusion of RP depresses the contrast ratios of clumps by factors of a few for clump masses less than 5% of the disk masses. For more massive clumps, the differences between and RP and no-RP simulations diminish. We note however, that the simulations analyzed have disk stellar masses below about 2E10 Msun/h. By creating mock Hubble Space Telescope observations we find that the number of clumps is slightly reduced in simulations with RP. However, since massive clumps survive the inclusion of RP and are found in our mock observations, we do not find a disagreement between simulations of our clumpy galaxies and observations of clumpy galaxies. We demonstrate that clumps found in any single gas, stellar, or mock observation image are not necessarily clumps found in another map, and that there are few clumps common to multiple maps.
72 - L. Ciotti 2015
AGN feedback from supermassive black holes (SMBHs) at the center of early type galaxies is commonly invoked as the explanation for the quenching of star formation in these systems. The situation is complicated by the significant amount of mass inject ed in the galaxy by the evolving stellar population over cosmological times. In absence of feedback, this mass would lead to unobserved galactic cooling flows, and to SMBHs two orders of magnitude more massive than observed. By using high-resolution 2D hydrodynamical simulations with radiative transport and star formation in state-of-the-art galaxy models, we show how the intermittent AGN feedback is highly structured on spatial and temporal scales, and how its effects are not only negative (shutting down the recurrent cooling episodes of the ISM), but also positive, inducing star formation in the inner regions of the host galaxy.
We present results from seventy-one zoom simulations of a Milky Way-sized (MW) halo, exploring the parameter space for a widely-used star formation and feedback model in the {tt Enzo} simulation code. We propose a novel way to match observations, usi ng functional fits to the observed baryon makeup over a wide range of halo masses. The model MW galaxy is calibrated using three parameters: the star formation efficiency $left(f_*right)$, the efficiency of thermal energy from stellar feedback $left(epsilonright)$ and the region into which feedback is injected $left(r {rm and} sright)$. We find that changing the amount of feedback energy affects the baryon content most significantly. We then identify two sets of feedback parameter values that are both able to reproduce the baryonic properties for haloes between $10^{10},mathrm{M_odot}$ and $10^{12},mathrm{M_odot}$. We can potentially improve the agreement by incorporating more parameters or physics. If we choose to focus on one property at a time, we can obtain a more realistic halo baryon makeup. We show that the employed feedback prescription is insensitive to dark matter mass resolution between $10^5,{rm M_odot}$ and $10^7,{rm M_odot}$. Contrasting both star formation criteria and the corresponding combination of optimal feedback parameters, we also highlight that feedback is self-consistent: to match the same baryonic properties, with a relatively higher gas to stars conversion efficiency, the feedback strength required is lower, and vice versa. Lastly, we demonstrate that chaotic variance in the code can cause deviations of approximately 10% and 25% in the stellar and baryon mass in simulations evolved from identical initial conditions.
Radiative feedback is an important consequence of cluster formation in Giant Molecular Clouds (GMCs) in which newly formed clusters heat and ionize their surrounding gas. The process of cluster formation, and the role of radiative feedback, has not b een fully explored in different GMC environments. We present a suite of simulations which explore how the initial gravitational boundedness, and radiative feedback, affect cluster formation. We model the early evolution ($<$ 5 Myr) of turbulent, 10$^6$ M$_{odot}$ clouds with virial parameters ranging from 0.5 to 5. To model cluster formation, we use cluster sink particles, coupled to a raytracing scheme, and a custom subgrid model which populates a cluster via sampling an IMF with an efficiency of 20% per freefall time. We find that radiative feedback only decreases the cluster particle formation efficiency by a few percent. The initial virial parameter plays a much stronger role in limiting cluster formation, with a spread of cluster formation efficiencies of 37% to 71% for the most unbound to the most bound model. The total number of clusters increases while the maximum mass cluster decreases with an increasing initial virial parameter, resulting in steeper mass distributions. The star formation rates in our cluster particles are initially consistent with observations but rise to higher values at late times. This suggests that radiative feedback alone is not responsible for dispersing a GMC over the first 5 Myr of cluster formation.
We present a new implementation of star formation in cosmological simulations, by considering star clusters as a unit of star formation. Cluster particles grow in mass over several million years at the rate determined by local gas properties, with hi gh time resolution. The particle growth is terminated by its own energy and momentum feedback on the interstellar medium. We test this implementation for Milky Way-sized galaxies at high redshift, by comparing the properties of model clusters with observations of young star clusters. We find that the cluster initial mass function is best described by a Schechter function rather than a single power law. In agreement with observations, at low masses the logarithmic slope is $alphaapprox 1.8-2$, while the cutoff at high mass scales with the star formation rate. A related trend is a positive correlation between the surface density of star formation rate and fraction of stars contained in massive clusters. Both trends indicate that the formation of massive star clusters is preferred during bursts of star formation. These bursts are often associated with major merger events. We also find that the median timescale for cluster formation ranges from 0.5 to 4 Myr and decreases systematically with increasing star formation efficiency. Local variations in the gas density and cluster accretion rate naturally lead to the scatter of the overall formation efficiency by an order of magnitude, even when the instantaneous efficiency is kept constant. Comparison of the formation timescale with the observed age spread of young star clusters provides an additional important constraint on the modeling of star formation and feedback schemes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا