ترغب بنشر مسار تعليمي؟ اضغط هنا

Line-of-Sight Anisotropies within X-ray Luminous Cluster Samples

66   0   0.0 ( 0 )
 نشر من قبل Christopher Miller
 تاريخ النشر 1999
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the results from two-point spatial correlation analyses on X-ray confirmed northern Abell clusters. The cluster samples are subsets of a volume-limited ROSAT All-Sky Survey study of 294 Abell clusters of which 240 are X-ray luminous. We examined magnitude- and volume-complete samples for differences according to richness and X-ray luminosity. For R>=1 clusters, we find r_0 = 22h^-1Mpc and gamma = -1.7, which is consistent with previous analyses of visually selected clusters. We also find no indications of line-of-sight anisotropies. For R >= 0 clusters, we find r_0= 17.5h^-1Mpc which is considerably lower than recent determinations of r_0 for similar X-ray bright cluster samples (e.g. the XBACs and the RASS1 clusters). All of the R>=0 X-ray confirmed samples, including the XBACs and RASS1 clusters, show line-of-sight anisotropies. Since X-ray emissions confirm a clusters reality, we conclude that these anisotropies are not the result of spuriously selected clusters. We also examine the Abell clusters for the depedence of r_0 and gamma on X-ray luminosity, and find no evidence for r_0 to grow with increasing X-ray luminosity thresholds. This is contrary to similar L_x vs. r_0 analyses of the RASS1 and XBACs cluster samples. We describe selection effects within the flux-limited XBACs and RASS1 samples and suggest how they can affect both the size of r_0 and its dependence on L_x.

قيم البحث

اقرأ أيضاً

92 - Carlo R. Contaldi 2016
In the weak field regime, gravitational waves can be considered as being made up of collisionless, relativistic tensor modes that travel along null geodesics of the perturbed background metric. We work in this geometric optics picture to calculate th e anisotropies in gravitational wave backgrounds resulting from astrophysical and cosmological sources. Our formalism yields expressions for the angular power spectrum of the anisotropies. We show how the anisotropies are sourced by intrinsic, Doppler, Sachs-Wolfe, and Integrated Sachs-Wolfe terms in analogy with Cosmic Microwave Background photons.
We discuss the measurements of the galaxy cluster mass functions at z=~0.05 and z=~0.5 using high-quality Chandra observations of samples derived from the ROSAT PSPC All-Sky and 400deg^2 surveys. We provide a full reference for the data analysis proc edures, present updated calibration of relations between the total cluster mass and its X-ray indicators (T_X, Mgas, and Y_X) based on a subsample of low-z relaxed clusters, and present a first measurement of the evolving L_X-Mtot relation (with Mtot estimated from Y_X) obtained from a well-defined statistically complete cluster sample and with appropriate corrections for the Malmquist bias applied. Finally, we present the derived cluster mass functions, estimate the systematic uncertainties in this measurement, and discuss the calculation of the likelihood function. We confidently measure the evolution in the cluster comoving number density at a fixed mass threshold, e.g., by a factor of 5.0 +- 1.2 at M_500=2.5e14 h^-1 Msun between z=0 and 0.5. This evolution reflects the growth of density perturbations and can be used for the cosmological constraints complementing those from the distance-redshift relation.
Up to now, the largest sample of galaxy clusters selected in X-rays comes from the ROSAT All-Sky Survey (RASS). Although there have been many interesting clusters discovered with the RASS data, the broad point spread function (PSF) of the ROSAT satel lite limits the amount of spatial information of the detected objects. This leads to the discovery of new cluster features when a re-observation is performed with higher resolution X-ray satellites. Here we present the results from XMM-Newton observations of three clusters: RXCJ2306.6-1319, ZwCl1665 and RXCJ0034.6-0208, for which the observations reveal a double or triple system of extended components. These clusters belong to the extremely expanded HIghest X-ray FLUx Galaxy Cluster Sample (eeHIFLUGCS), which is a flux-limited cluster sample ($f_textrm{X,500}geq 5times10^{-12}$ erg s$^{-1}$ cm$^{-2}$ in the $0.1-2.4$ keV energy band). For each structure in each cluster, we determine the redshift with the X-ray spectrum and find that the components are not part of the same cluster. This is confirmed by an optical spectroscopic analysis of the galaxy members. Therefore, the total number of clusters is actually 7 and not 3. We derive global cluster properties of each extended component. We compare the measured properties to lower-redshift group samples, and find a good agreement. Our flux measurements reveal that only one component of the ZwCl1665 cluster has a flux above the eeHIFLUGCS limit, while the other clusters will no longer be part of the sample. These examples demonstrate that cluster-cluster projections can bias X-ray cluster catalogues and that with high-resolution X-ray follow-up this bias can be corrected.
We report the discovery of a massive, X-ray-luminous cluster of galaxies at z=1.393, the most distant X-ray-selected cluster found to date. XMMU J2235.3-2557 was serendipitously detected as an extended X-ray source in an archival XMM-Newton observati on of NGC 7314. VLT-FORS2 R and z band snapshot imaging reveals an over-density of red galaxies in both angular and color spaces. The galaxy enhancement is coincident in the sky with the X-ray emission; the cluster red sequence at R-z ~ 2.1 identifies it as a high-redshift candidate. Subsequent VLT-FORS2 multi-object spectroscopy unambiguously confirms the presence of a massive cluster based on 12 concordant redshifts in the interval 1.38<z<1.40. The preliminary cluster velocity dispersion is 762+/-265 km/s. VLT-ISAAC Ks and J band images underscore the rich distribution of red galaxies associated with the cluster. Based on a 45 ks XMM-Newton observation, we find the cluster has an aperture-corrected, unabsorbed X-ray flux of f_X = (3.6 +/- 0.3) x 10^{-14} erg/cm^2/s, a rest-frame X-ray luminosity of L_X = (3.0 +/- 0.2) x 10^{44} h_70^{-2} erg/s (0.5--2.0 keV), and a temperature of kT=6.0 (+2.5, -1.8) keV. Though XMMU J2235.3-2557 is likely the first confirmed z>1 cluster found with XMM-Newton, the relative ease and efficiency of discovery demonstrates that it should be possible to build large samples of z>1 clusters through the joint use of X-ray and large, ground-based telescopes.
In this paper we present the best quality XMM-Newton and Suzaku data from M82 X-1 so far. We analyze the spectra of this remarkable Ultra-Luminous X-ray Source in a self-consistent manner. We have disentangled emission from the host galaxy, responsib le for the soft X-ray emission (E<2.5 keV), which is successfully described by a two-temperature thermal emission from a hot plasma in multi-phase state, plus a narrow Fe line emission at 6.7 keV. This allowed us to properly study the intrinsic continuum emission from M82 X-1. The continuum of the Suzaku spectrum is curved and the high quality data of the Suzaku spectrum allowed us to significantly detect a weakly broadened Fe K-alpha emission line. The Equivalent-Width is in the range 30-80 eV and it does not depend on the model applied for the continuum. Assuming that this line is coming from the ULX via disc fluorescence, the data indicates a disc truncation at a radius of 6-20 gravitational radii. This value is comparable to or even larger than the Innermost Stable Circular Orbit of a non-spinning (Schwarzschild) black hole. Future longer observations might test this scenario.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا