ترغب بنشر مسار تعليمي؟ اضغط هنا

Superbubble evolution including the star-forming clouds: Is it possible to reconcile LMC observations with model predictions?

32   0   0.0 ( 0 )
 نشر من قبل Sergey A. Silich
 تاريخ النشر 1999
  مجال البحث فيزياء
والبحث باللغة English
 تأليف S. Silich




اسأل ChatGPT حول البحث

Here we present a possible solution to the apparent discrepancy between the observed properties of LMC bubbles and the standard, constant density bubble model. A two-dimensional model of a wind-driven bubble expanding from a flattened giant molecular cloud is examined. We conclude that the expansion velocities derived from spherically symmetric models are not always applicable to elongated young bubbles seen almost face-on due to the LMC orientation. In addition, an observational test to differentiate between spherical and elongated bubbles seen face-on is discussed.


قيم البحث

اقرأ أيضاً

The possibility of earthquake prediction is one of the key open questions in modern geophysics. We propose an approach based on the analysis of common short-term candidate precursors (2 weeks to 3 months prior to strong earthquake) with the subsequen t processing of brain activity signals generated in specific types of rats (kept in laboratory settings) who reportedly sense an impending earthquake few days prior to the event. We illustrate the identification of short-term precursors using the groundwater sodium-ion concentration data in the time frame from 2010 to 2014 (a major earthquake occurred on February 28, 2013), recorded at two different sites in the south-eastern part of the Kamchatka peninsula, Russia. The candidate precursors are observed as synchronized peaks in the nonstationarity factors, introduced within the flicker-noise spectroscopy framework for signal processing, for the high-frequency component of both time series. These peaks correspond to the local reorganizations of the underlying geophysical system that are believed to precede strong earthquakes. The rodent brain activity signals are selected as potential immediate (up to 2 weeks) deterministic precursors due to the recent scientific reports confirming that rodents sense imminent earthquakes and the population-genetic model of Kirshvink (2000) showing how a reliable genetic seismic escape response system may have developed over the period of several hundred million years in certain animals. The use of brain activity signals, such as electroencephalograms, in contrast to conventional abnormal animal behavior observations, enables one to apply the standard input-sensor-response approach to determine what input signals trigger specific seismic escape brain activity responses
60 - Antonio Pipino 2008
To show that the bulk of the star formation and the galaxy assembly should occur simultaneously in order to reproduce at the same time the downsizing and the chemical properties of present-day massive spheroids within one effective radius.By means of chemical evolution models we create galactic building blocks of several masses and different chemical properties. We then construct a sample of possible merger histories going from a multiple minor merger scenario to a single major merger event aimed at reproducing a single massive elliptical galaxy. We compare our results against the mass-[Mg/Fe] and the mass-metallicity relations. We found that a series of multiple dry-mergers (no star formation in connection with the merger) involving building-blocks which have been created ad hoc in order to satisfy the [Mg/Fe]-mass relation cannot fit the mass-metallicity relation and viceversa. A major dry merger, instead, does not worsen the agreement with observation if it happens between galaxies which already obey to both the mass- or sigma-[Mg/Fe] and the mass-(sigma-) metallicity relations. However, this process alone cannot explain the physical reasons for these trends. Dry mergers alone cannot be the way to reconcile the need of a more efficient star formation in the most massive galaxies with the late time assembly suggested in the hierarchical paradigm in order to recover the galaxy downsizing.
It is known that time-dependent perturbations can enhance superconductivity and increase the critical temperature. If this phenomenon happens to high-T_c superconductors, one could obtain room-temperature superconductors, but this is still an open is sue experimentally. Meanwhile, we would like to understand this phenomenon from gravity dual and see if the enhancement is possible for holographic superconductors. Previous work (arXiv:1104.4098 [hep-th]) has studied this issue by adding a time-dependent chemical potential, but their analysis is questionable as a true dynamic equilibrium. In particular, the AdS boundary does not supply energy to the bulk spacetime in their setup. A more appropriate way to discuss the enhancement is to add a time-dependent vector potential, i.e., a time-dependent electric field. However, the enhancement does not occur for holographic superconductors.
127 - Vadim A. Bednyakov 2015
The paper contains description of the main properties of the galactic dark matter (DM) particles, available approaches for detection of DM, main features of direct DM detection, ways to estimate prospects for the DM detection, the first collider sear ch for a DM candidate within an Effective Field Theory, complete review of ATLAS results of the DM candidate search with LHC RUN I, and less complete review of exotic dark particle searches with other accelerators and not only. From these considerations it follows that one is unable to prove, especially model-independently,a discovery of a DM particle with an accelerator, or collider. One can only obtain evidence on existence of a weakly interacting neutral particle, which could be, or could not be the DM candidate. The current LHC DM search program uses only the missing transverse energy signature. Non-observation of any excess above Standard Model expectations forces the LHC experiments to enter into the same fighting for the best exclusion curve, in which (almost) all direct and indirect DM search experiments permanently take place. But this fighting has very little (almost nothing) to do with a real possibility of discovering a DM particle. The true DM particles possess an exclusive galactic signature --- annual modulation of a signal, which is accessible today only for direct DM detection experiments. There is no way for it with a collider, or accelerator. Therefore to prove the DM nature of a collider-discovered candidate one must find the candidate in a direct DM experiment and demonstrate the galactic signature for the candidate. Furthermore, being observed, the DM particle must be implemented into a modern theoretical framework. The best candidate is the supersymmetry, which looks today inevitable for coherent interpretation of all available DM data.
The equation of state (EOS) in quartessence models interpolates between two stages: $psimeq 0$ at high energy densities and $papprox -rho$ at small ones. In the quartessence models analyzed up to now, the EOS is convex, implying increasing adiabatic sound speed ($c_{s}^{2}$) as the energy density decreases in an expanding Universe. A non-negligible $c_{s}^{2}$ at recent times is the source of the matter power spectrum problem that plagued all convex (non-silent) quartessence models. Viability for these cosmologies is only possible in the limit of almost perfect mimicry to $Lambda$CDM. In this work we investigate if similarity to $Lambda$CDM is also required in the class of quartessence models whose EOS changes concavity as the Universe evolves. We focus our analysis in the simple case in which the EOS has a step-like shape, such that at very early times $psimeq0$, and at late times $psimeq const<0$. For this class of models a non-negligible $c_{s}^{2}$ is a transient phenomenon, and could be relevant only at a more early epoch. We show that agreement with a large set of cosmological data requires that the transition between these two asymptotic states would have occurred at high redshift ($z_tgtrsim38$). This leads us to conjecture that the cosmic expansion history of any successful non-silent quartessence is (practically) identical to the $Lambda$CDM one.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا