ترغب بنشر مسار تعليمي؟ اضغط هنا

Are dry mergers of Ellipticals the way to reconcile model predictions with the downsizing?

45   0   0.0 ( 0 )
 نشر من قبل Antonio Pipino
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Antonio Pipino




اسأل ChatGPT حول البحث

To show that the bulk of the star formation and the galaxy assembly should occur simultaneously in order to reproduce at the same time the downsizing and the chemical properties of present-day massive spheroids within one effective radius.By means of chemical evolution models we create galactic building blocks of several masses and different chemical properties. We then construct a sample of possible merger histories going from a multiple minor merger scenario to a single major merger event aimed at reproducing a single massive elliptical galaxy. We compare our results against the mass-[Mg/Fe] and the mass-metallicity relations. We found that a series of multiple dry-mergers (no star formation in connection with the merger) involving building-blocks which have been created ad hoc in order to satisfy the [Mg/Fe]-mass relation cannot fit the mass-metallicity relation and viceversa. A major dry merger, instead, does not worsen the agreement with observation if it happens between galaxies which already obey to both the mass- or sigma-[Mg/Fe] and the mass-(sigma-) metallicity relations. However, this process alone cannot explain the physical reasons for these trends. Dry mergers alone cannot be the way to reconcile the need of a more efficient star formation in the most massive galaxies with the late time assembly suggested in the hierarchical paradigm in order to recover the galaxy downsizing.

قيم البحث

اقرأ أيضاً

169 - Daisuke. Kawata 2006
We use a cosmological numerical simulation to study the tidal features produced by a minor merger with an elliptical galaxy. We find that the simulated tidal features are quantitatively similar to the red tidal features, i.e., dry tidal features, rec ently found in deep images of elliptical galaxies at intermediate redshifts. The minor merger in our simulation does not trigger star formation due to active galactic nuclei heating. Therefore, both the tidal features and the host galaxy are red, i.e. a dry minor merger. The stellar mass of the infalling satellite galaxy is about 10^10 Msun, and the tidal debris reach the surface brightness of mu_R~27 mag arcsec^-2. Thus, we conclude that tidal debris from minor mergers can explain the observed dry tidal features in ellipticals at intermediate redshifts, although other mechanisms (such as major dry mergers) may also be important.
31 - S. Silich 1999
Here we present a possible solution to the apparent discrepancy between the observed properties of LMC bubbles and the standard, constant density bubble model. A two-dimensional model of a wind-driven bubble expanding from a flattened giant molecular cloud is examined. We conclude that the expansion velocities derived from spherically symmetric models are not always applicable to elongated young bubbles seen almost face-on due to the LMC orientation. In addition, an observational test to differentiate between spherical and elongated bubbles seen face-on is discussed.
Using data from the Spitzer Space Telescope, we analyze the mid-infrared (3-70 micron) spectral energy distributions of dry merger candidates in the Bootes field of the NOAO Deep Wide-Field Survey. These candidates were selected by previous authors t o be luminous, red, early-type galaxies with morphological evidence of recent tidal interactions. We find that a significant fraction of these candidates exhibit 8 and 24 micron excesses compared to expectations for old stellar populations. We estimate that a quarter of dry merger candidates have mid-infrared-derived star formation rates greater than ~1 MSun/yr. This represents a frosting on top of a large old stellar population, and has been seen in previous studies of elliptical galaxies. Further, the dry merger candidates include a higher fraction of starforming galaxies relative to a control sample without tidal features. We therefore conclude that the star formation in these massive ellipticals is likely triggered by merger activity. Our data suggest that the mergers responsible for the observed tidal features were not completely dry, and may be minor mergers involving a gas-rich dwarf galaxy.
Mergers between red galaxies are observed to be common in the nearby Universe, and are thought to be the dominant mechanism by which massive galaxies grow their mass at late times. These ``dry mergers can be readily identified in very deep ground bas ed images, thanks to their extended low surface brightness tidal features. However, ground-based images lack the required resolution to determine the morphologies of the merging galaxies, and to measure the amount of dust and associated gas. We present HST/ACS and WFPC2 observations of a sample of 31 bulge-dominated red-sequence galaxies at z~0.1, comprised of ongoing mergers, merger remnants, and undisturbed galaxies. Nearly all galaxies have early-type morphologies and most are well-fit by r^1/4 law surface brightness profiles. We find that only 10% of the galaxies show evidence for the presence of dust. The amount of cold gas (or its upper limit) is calculated from the mean color-excess, assuming a simple relation between gas mass and dust mass. The gas mass is low for all galaxies, and we find that Mgas/Mstellar < 3x10^-4. We infer that red mergers in the nearby Universe mostly involve early-type galaxies containing little cold gas and dust. This may imply that the progenitors were mostly devoid of gas and/or that feedback mechanisms are very effective in preventing the gas to cool. The lack of gas in these objects may also imply a relatively large fraction of binary black holes in the centers of massive ellipticals.
We study how well we can reconstruct the 2-point clustering of galaxies on linear scales, as a function of mass and luminosity, using the halo occupation distribution (HOD) in several semi-analytical models (SAMs) of galaxy formation from the Millenn ium Simulation. We find that HOD with Friends of Friends groups can reproduce galaxy clustering better than gravitationally bound haloes. This indicates that Friends of Friends groups are more directly related to the clustering of these regions than the bound particles of the overdensities. In general we find that the reconstruction works at best to 5% accuracy: it underestimates the bias for bright galaxies. This translates to an overestimation of 50% in the halo mass when we use clustering to calibrate mass. We also found a degeneracy on the mass prediction from the clustering amplitude that affects all the masses. This effect is due to the clustering dependence on the host halo substructure, an indication of assembly bias. We show that the clustering of haloes of a given mass increases with the number of subhaloes, a result that only depends on the underlying matter distribution. As the number of galaxies increases with the number of subhaloes in SAMs, this results in a low bias for the HOD reconstruction. We expect this effect to apply to other models of galaxy formation, including the real universe, as long as the number of galaxies incresases with the number of subhaloes. We have also found that the reconstructions of galaxy bias from the HOD model fails for low mass haloes with M = 3-5x10^11 Msun/h. We find that this is because galaxy clustering is more strongly affected by assembly bias for these low masses.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا