ترغب بنشر مسار تعليمي؟ اضغط هنا

The Reaction Rate Sensitivity of Nucleosynthesis in Type II Supernovae

93   0   0.0 ( 0 )
 نشر من قبل Dr. Robert D. Hoffman
 تاريخ النشر 1998
  مجال البحث فيزياء
والبحث باللغة English
 تأليف R. D. Hoffman




اسأل ChatGPT حول البحث

We explore the sensitivity of the nucleosynthesis of intermediate mass elements (28 < A < 80) in supernovae derived from massive stars to the nuclear reaction rates employed in the model. Two standard sources of reaction rate data (Woosley et al. 1978; and Thielemann et al. 1987) are employed in pairs of calculations that are otherwise identical. Both include as a common backbone the experimental reactions rates of Caughlan & Fowler (1988). Two stellar models are calculated for each of two main sequence masses: 15 and 25 solar masses. Each star is evolved from core hydrogen burning to a presupernova state carrying an appropriately large reaction network, then exploded using a piston near the edge of the iron core as described by Woosley & Weaver (1995). The final stellar yields from the models calculated with the two rate sets are compared and found to differ in most cases by less than a factor of two over the entire range of nuclei studied. Reasons for the major discrepancies are discussed in detail along with the physics underlying the two reaction rate sets employed. The nucleosynthesis results are relatively robust and less sensitive than might be expected to uncertainties in nuclear reaction rates, though they are sensitive to the stellar model employed.



قيم البحث

اقرأ أيضاً

64 - K. Nomoto 1997
Presupernova evolution and explosive nucleosynthesis in massive stars for main-sequence masses from 13 $M_odot$ to 70 $M_odot$ are calculated. We examine the dependence of the supernova yields on the stellar mass, $^{12}C(alpha, gamma) ^{16}O}$ rate, and explosion energy. The supernova yields integrated over the initial mass function are compared with the solar abundances.
72 - K. Nomoto 1997
Among the major uncertainties involved in the Chandrasekhar mass models for Type Ia supernovae are the companion star of the accreting white dwarf (or the accretion rate that determines the carbon ignition density) and the flame speed after ignition. We present nucleosynthesis results from relatively slow deflagration (1.5 - 3 % of the sound speed) to constrain the rate of accretion from the companion star. Because of electron capture, a significant amount of neutron-rich species such as ^{54}Cr, ^{50}Ti, ^{58}Fe, ^{62}Ni, etc. are synthesized in the central region. To avoid the too large ratios of ^{54}Cr/^{56}Fe and ^{50}Ti/^{56}Fe, the central density of the white dwarf at thermonuclear runaway must be as low as ltsim 2 e9 gmc. Such a low central density can be realized by the accretion as fast as $dot M gtsim 1 times 10^{-7} M_odot yr^{-1}$. These rapidly accreting white dwarfs might correspond to the super-soft X-ray sources.
We present our first nucleosynthesis results from a numerical simulation of the thermonuclear disruption of a static cold Chandrasekhar-mass C/O white dwarf. The two-dimensional simulation was performed with an adaptive-mesh Eulerian hydrodynamics co de, FLASH, that uses as a flame capturing scheme the evolution of a passive scaler. To compute the isotopic yields and their velocity distribution, 10,000 massless tracer particles are embedded in the star. The particles are advected along streamlines and provide a Lagrangian description of the explosion. We briefly describe our verification tests and preliminary results from post-processing the particle trajectories with a modest (214 isotopes) reaction network.
While the high-entropy wind (HEW) of Type II supernovae remains one of the more promising sites for the rapid neutron-capture (r-) process, hydrodynamic simulations have yet to reproduce the astrophysical conditions under which the latter occurs. We have performed large-scale network calculations within an extended parameter range of the HEW, seeking to identify or to constrain the necessary conditions for a full reproduction of all r-process residuals N_{r,odot}=N_{odot}-N_{s,odot} by comparing the results with recent astronomical observations. A superposition of weighted entropy trajectories results in an excellent reproduction of the overall N_{r,odot}-pattern beyond Sn. For the lighter elements, from the Fe-group via Sr-Y-Zr to Ag, our HEW calculations indicate a transition from the need for clearly different sources (conditions/sites) to a possible co-production with r-process elements, provided that a range of entropies are contributing. This explains recent halo-star observations of a clear non-correlation of Zn and Ge and a weak correlation of Sr - Zr with heavier r-process elements. Moreover, new observational data on Ru and Pd seem to confirm also a partial correlation with Sr as well as the main r-process elements (e.g. Eu).
We investigate the early-time light-curves of a large sample of 223 type II supernovae (SNe) from the Sloan Digital Sky Survey and the Supernova Legacy Survey. Having a cadence of a few days and sufficient non-detections prior to explosion, we constr ain rise-times, i.e. the durations from estimated first to maximum light, as a function of effective wavelength. At restframe g-band (4722A), we find a distribution of fast rise-times with median of (7.5+/-0.3) days. Comparing these durations with analytical shock models of Rabinak and Waxman (2013); Nakar and Sari (2010) and hydrodynamical models of Tominaga et al. (2009), which are mostly sensitive to progenitor radius at these epochs, we find a median characteristic radius of less than 400 solar radii. The inferred radii are on average much smaller than the radii obtained for observed red supergiants (RSG). Investigating the post-maximum slopes as a function of effective wavelength in the light of theoretical models, we find that massive hydrogen envelopes are still needed to explain the plateaus of SNe II. We therefore argue that the SN II rise-times we observe are either a) the shock cooling resulting from the core collapse of RSG with small and dense envelopes, or b) the delayed and prolonged shock breakout of the collapse of a RSG with an extended atmosphere or embedded within pre-SN circumstellar material.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا