ترغب بنشر مسار تعليمي؟ اضغط هنا

FU Orionis resolved by infrared long baseline interferometry at a 2-AU scale

50   0   0.0 ( 0 )
 نشر من قبل Fabien Malbet
 تاريخ النشر 1998
  مجال البحث فيزياء
والبحث باللغة English
 تأليف F. Malbet




اسأل ChatGPT حول البحث

We present the first infrared interferometric observations of a young stellar object with a spatial projected resolution better than 2 AU. The observations were obtained with the Palomar Testbed Interferometer. FU Ori exhibits a visibility of V^2 =0.72 +/- 0.07 for a 103 +/- 5 m projected baseline at lambda = 2.2 microns. The data are consistent on the spatial scale probed by PTI both with a binary system scenario (maximum magnitude difference of 2.7 +/- 0.5 mag and smallest separation of 0.35 +/- 0.05 AU) and a standard luminous accretion disk model (approx. accretion rate of 6e-5 Mo/yr) where the thermal emission dominates the stellar scattering, and inconsistent with a single stellar photosphere.



قيم البحث

اقرأ أيضاً

107 - Fabien Malbet 2005
We report new near-infrared, long-baseline interferometric observations at the AU scale of the pre-main-sequence star FU Orionis with the PTI, IOTA and VLTI interferometers. This young stellar object has been observed on 42 nights over a period of 6 years from 1998 to 2003. We have obtained 287 independent measurements of the fringe visibility with 6 different baselines ranging from 20 to 110 meters in length, in the H and K bands. Our extensive (u,v)-plane coverage, coupled with the published spectral energy distribution data, allows us to test the accretion disk scenario. We find that the most probable explanation for these observations is that FU Ori hosts an active accretion disk whose temperature law is consistent with standard models. We are able to constrain the geometry of the disk, including an inclination of 55 deg and a position angle of 47 deg. In addition, a 10 percent peak-to-peak oscillation is detected in the data (at the two-sigma level) from the longest baselines, which we interpret as a possible disk hot-spot or companion. However, the oscillation in our best data set is best explained with an unresolved spot located at a projected distance of 10 AU at the 130 deg position angle and with a magnitude difference of DeltaK = 3.9 and DeltaH = 3.6 mag moving away from the center at a rate of 1.2 AU/yr. we propose to interpret this spot as the signature of a companion of the central FU Ori system on an extremely eccentric orbit. We speculate that the close encounter of this putative companion and the central star could be the explanation of the initial photometric rise of the luminosity of this object.
We present Keck Interferometer observations of the three prototypical FU Orionis stars, FU Ori, V1057 Cyg, and V1515 Cyg. With a spatial resolution of a few milli-arcseconds and a spectral resolution of 2000, our near-infrared observations spatially resolve gas and dust emission extending from stellocentric radii of ~0.05 AU to several AU. We fit these data with accretion disk models where each stellocentric radius of the disk is represented by a supergiant-type stellar emission spectrum at the disk temperature. A disk model is consistent with the data for FU Ori, although we require some local asymmetry in the disk. For V1057 Cyg the disk model does not fit our data well, especially compared to the fit quality achieved for FU Ori. We speculate that a disk wind may be contributing substantially to the observed near-IR emission in this source. The data for V1515 Cyg are noisier than the data obtained for the other two objects, and do not strongly constrain the validity of an accretion disk model.
69 - Daniel Bonneau 2015
This paper serves as a reference on how to estimate the parameters of binary stars and how to combine multiple techniques, namely astrometry, interferometry and radial velocities.
By using the ALFA adaptive optics system at the 3.6m telescope of the Calar Alto Observatory we detected a faint red star in the apparent vicinity of FU Ori, the prototype of the FUor outburst stars. Independent confirmation of the detection is obtai ned from archival PUEO/CFHT images. The separation between the companion candidate and FU Ori is 0.50 and their brightness contrast is around 4 magnitudes. We discuss the possible nature of the newly detected star based on near-infrared photometry and its proper motion relative to FU Ori. The photometric data are consistent with a nearby late-type main sequence star, a background giant star, and a pre-main sequence star. On the basis of the proper motion and the stellar surface density in the direction towards FU Ori, we argue that the probabilities of the first two options are very low.
We have developed time-dependent models of FU Ori accretion outbursts to explore the physical properties of protostellar disks. Our two-dimensional, axisymmetric models incorporate full vertical structure with a new treatment of the radiative boundar y condition for the disk photosphere. We find that FU Ori-type outbursts can be explained by a slow accumulation of matter due to gravitational instability. Eventually this triggers the magnetorotational instability, which leads to rapid accretion. The thermal instability is triggered in the inner disk but this instability is not necessary for the outburst. An accurate disk vertical structure, including convection, is important for understanding the outburst behavior. Large convective eddies develop during the high state in the inner disk. The models are in agreement with Spitzer IRS spectra and also with peak accretion rates and decay timescales of observed outbursts, though some objects show faster rise timescale. We also propose that convection may account for the observed mild-supersonic turbulence and the short-timescale variations of FU Orionis objects.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا