ترغب بنشر مسار تعليمي؟ اضغط هنا

FU Orionis: A Binary Star?

71   0   0.0 ( 0 )
 نشر من قبل Hongchi Wang Dr.
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

By using the ALFA adaptive optics system at the 3.6m telescope of the Calar Alto Observatory we detected a faint red star in the apparent vicinity of FU Ori, the prototype of the FUor outburst stars. Independent confirmation of the detection is obtained from archival PUEO/CFHT images. The separation between the companion candidate and FU Ori is 0.50 and their brightness contrast is around 4 magnitudes. We discuss the possible nature of the newly detected star based on near-infrared photometry and its proper motion relative to FU Ori. The photometric data are consistent with a nearby late-type main sequence star, a background giant star, and a pre-main sequence star. On the basis of the proper motion and the stellar surface density in the direction towards FU Ori, we argue that the probabilities of the first two options are very low.



قيم البحث

اقرأ أيضاً

The variable star V1735 Cyg (= Elias 1-12) lies in the IC 5146 dark cloud and is a member of the class of FU Orionis objects whose dramatic optical brightenings are thought to be linked to episodic accretion. We report the first X-ray detections of V 1735 Cyg and a deeply-embedded class I protostar lying 24 arcsecs to its northeast. X-ray spectra obtained with EPIC on XMM-Newton reveal very high-temperature plasma (kT > 5 keV) in both objects, but no large flares. Such hard X-ray emission is not anticipated from accretion shocks and is a signature of magnetic processes. We place these new results into the context of what is presently known about the X-ray properties of FU Orionis stars and other accreting young stellar objects.
212 - Adam A. Miller 2010
We present pre- and post-outburst observations of the new FU Orionis-like young stellar object PTF 10qpf (also known as LkHa 188-G4 and HBC 722). Prior to this outburst, LkHa 188-G4 was classified as a classical T Tauri star on the basis of its optic al emission-line spectrum superposed on a K8-type photosphere, and its photometric variability. The mid-infrared spectral index of LkHa 188-G4 indicates a Class II-type object. LkHa 188-G4 exhibited a steady rise by ~1 mag over ~11 months starting in Aug. 2009, before a subsequent more abrupt rise of > 3 mag on a time scale of ~2 months. Observations taken during the eruption exhibit the defining characteristics of FU Orionis variables: (i) an increase in brightness by > 4 mag, (ii) a bright optical/near-infrared reflection nebula appeared, (iii) optical spectra are consistent with a G supergiant and dominated by absorption lines, the only exception being Halpha which is characterized by a P Cygni profile, (iv) near-infrared spectra resemble those of late K--M giants/supergiants with enhanced absorption seen in the molecular bands of CO and H_2O, and (v) outflow signatures in H and He are seen in the form of blueshifted absorption profiles. LkHa 188-G4 is the first member of the FU Orionis-like class with a well-sampled optical to mid-infrared spectral energy distribution in the pre-outburst phase. The association of the PTF 10qpf outburst with the previously identified classical T Tauri star LkHa 188-G4 (HBC 722) provides strong evidence that FU Orionis-like eruptions represent periods of enhanced disk accretion and outflow, likely triggered by instabilities in the disk. The early identification of PTF 10qpf as an FU Orionis-like variable will enable detailed photometric and spectroscopic observations during its post-outburst evolution for comparison with other known outbursting objects.
During their formation phase stars gain most of their mass in violent episodic accretion events, such as observed in FU Orionis (FUor) and EXor stars. V346 Normae is a well-studied FUor that underwent a strong outburst beginning in $sim1980$. Here, w e report photometric and spectroscopic observations which show that the visual/near-infrared brightness has decreased dramatically between the 1990s and 2010 (${Delta}Rapprox10.9^{rm m}$, ${Delta}Japprox7.8^{rm m}$, ${Delta}Kapprox5.8^{rm m}$). The spectral properties of this fading event cannot be explained with variable extinction alone, but indicate a drop in accretion rate by 2-3 orders of magnitude, marking the first time that a member of the FUor class has been observed to switch to a very low accretion phase. Remarkably, in the last few years (2011-2015) V346 Nor has brightened again at all near-infrared wavelengths, indicating the onset of a new outburst event. The observed behaviour might be consistent with the clustered luminosity bursts that have been predicted by recent gravitational instability and fragmentation models for the early stages of protostellar evolution. Given V346 Nors unique characteristics (concerning outburst duration, repetition frequency, and spectroscopic diagnostics), our results also highlight the need for revisiting the FUor/EXor classification scheme.
We present new K-band long baseline interferometer observations of three young stellar objects of the FU Orionis class, V1057 Cyg, V1515 Cyg and Z CMa-SE, obtained at the Keck Interferometer during its commissioning science period. The interferometer clearly resolves the source of near-infrared emission in all three objects. Using simple geometrical models we derive size scales (0.5-4.5 AU) for this emission. All three objects appear significantly more resolved than expected from simple models of accretion disks tuned to fit the broadband optical and infrared spectro-photometry. We explore variations in the key parameters that are able to lower the predicted visibility amplitudes to the measured levels, and conclude that accretion disks alone do not reproduce the spectral energy distributions and K-band visibilities simultaneously. We conclude that either disk models are inadequate to describe the near-infrared emission, or additional source components are needed. We hypothesize that large scale emission (10s of AU) in the interferometer field of view is responsible for the surprisingly low visibilities. This emission may arise in scattering by large envelopes believed to surround these objects.
We have developed time-dependent models of FU Ori accretion outbursts to explore the physical properties of protostellar disks. Our two-dimensional, axisymmetric models incorporate full vertical structure with a new treatment of the radiative boundar y condition for the disk photosphere. We find that FU Ori-type outbursts can be explained by a slow accumulation of matter due to gravitational instability. Eventually this triggers the magnetorotational instability, which leads to rapid accretion. The thermal instability is triggered in the inner disk but this instability is not necessary for the outburst. An accurate disk vertical structure, including convection, is important for understanding the outburst behavior. Large convective eddies develop during the high state in the inner disk. The models are in agreement with Spitzer IRS spectra and also with peak accretion rates and decay timescales of observed outbursts, though some objects show faster rise timescale. We also propose that convection may account for the observed mild-supersonic turbulence and the short-timescale variations of FU Orionis objects.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا