ترغب بنشر مسار تعليمي؟ اضغط هنا

The Disks of Galaxies with Seyfert and Starburst Nuclei: II. Near-Infrared Structural Properties

170   0   0.0 ( 0 )
 نشر من قبل Leslie Hunt
 تاريخ النشر 1998
  مجال البحث فيزياء
والبحث باللغة English
 تأليف L.K. Hunt




اسأل ChatGPT حول البحث

We have derived the near-infrared structural components of a sample of Seyfert and starburst (SBN) host galaxies by fitting the images of Hunt et al. (1997,ApJS,108,229) with a new two-dimensional decomposition algorithm. An analysis of the fitted parameters shows that Seyfert 1 and SBN bulges resemble normal early-type bulges in structure and color, with (J-K)^c_b about 0.1 mag redder than disk (J-K)^c_d. Seyfert 2 bulges, instead, are bluer than normal with (J-K)^c_b ~ (J-K)^c_d. Seyfert disks (especially Type 1), but not those of SBNs, are abnormally bright (in surface brightness), significantly more so than even the brightest normal disks. Seyfert disks are also compact, but similar to those in normal early-type spirals. For a given mass, Seyferts and especially SBNs are abnormally rich in neutral hydrogen, and there is strong, albeit indirect, evidence for lower mass-to-light (M/L) ratios in Seyfert and SBN disks, but for normal M/Ls in their bulges. In Seyferts and SBNs, HI mass fractions and M/L ratios are anticorrelated, and we attribute the high gas mass fractions and low M/Ls in SBNs and several Seyferts to ongoing star formation. Such abundant gas in Seyferts would be expected to inhibit bar formation, which may explain why active galaxies are not always barred.



قيم البحث

اقرأ أيضاً

(Abridged) We present new K-band spectroscopy for a sample of 48 starburst galaxies, obtained using UKIRT in Hawaii. This constitutes a fair sample of the most common types of starburst galaxies found in the nearby Universe. The variety of near infra red spectral features shown by these galaxies implies different bursts characteristics, which suggests that we survey galaxies with different star formation histories or at different stages of their burst evolution. Using synthetic starburst models, we conclude that the best ensemble of parameters which describe starburst galaxies in the nearby universe are a constant rate of star formation, a Salpeter IMF with an upper mass cutoff equal to 30 solar mass and bursts ages between 10 Myr and 1 Gyr. The model is fully consistent with the differences observed in the optical and FIR between the different types of starbursts. It suggests that HII galaxies have younger bursts and lower metallicities than SBNGs, while LIRGs have younger bursts but higher metallicities. Our observations suggest that the starburst phenomenon must be a sustained or self--sustained phenomenon: either star formation is continuous in time or multiple bursts happen in sequence over a relatively long period of time. The generality of our observations implies that this is a characteristic of starburst galaxies in the nearby Universe.
Results from near-infrared 1.5 - 2.5 micron long-slit spectroscopy of 14 nearby Seyfert galaxies are presented.
Results from an analysis of low resolution (R~250) near-IR long-slit spectra covering simultaneously the I, J, H, and K bands, for a sample of 15 Seyfert galaxies and the N5253 starburst nucleus, are presented. The Seyfert galaxies were selected as p resenting `linear or cone-like high excitation emission line in the optical, most probably due to the collimation of the central sources radiation by a dusty molecular torus. Our goal was to look for signatures of this torus, and to investigate the gaseous distribution, excitation and reddening. The IR emission lines are spatially extended in most cases, and we have used the [FeII]/Pa(beta) ratio as a measure of the gaseous excitation in Mrk573, N1386, and N7582. Values for this ratio between 1.5 and 6 are found, suggesting excitation of [FeII] by X-rays or shock waves in some regions. Nuclear Pa(beta) in N1365, and possibly nuclear Br(gama) in Mrk573, are broad. From analysis of the spatial distribution of the continuum (J-H) and (H-K) colours derived from our spectra, we find redder colours for the nucleus than the nearby bulge in most of the Seyfert 2s observed. Comparison with models including emission from dust and stars shows that hot (T~1000 K) dust emission dominates the nuclear continuum in N1365, N2110, N3281, N7582, and ESO362-G18. In N1386, N5643, and N5728 the main contributor is the underlying stellar population, combined with some foreground reddening and/or cool dust emission. In a few cases, the (J-H) colours on opposite sides of the nucleus differ by 0.3-0.8 mag, an effect that we interpret as partly due to differences in the local stellar population, and possibly extinction gradients.
We present a detailed study of the bar fraction in the CfA sample of Seyfert galaxies, and in a carefully selected control sample of non-active galaxies, to investigate the relation between the presence of bars and of nuclear activity. To avoid the p roblems related to bar classification in the RC3, e.g., subjectivity, low resolution and contamination by dust, we have developed an objective bar classification method, which we conservatively apply to our new sub-arcsecond resolution near-infrared imaging data set (Peletier et al. 1999). We are able to use stringent criteria based on radial profiles of ellipticity and major axis position angle to determine the presence of a bar and its axial ratio. Concentrating on non-interacting galaxies in our sample for which morphological information can be obtained, we find that Seyfert hosts are barred more often (79% +/- 7.5%) than the non-active galaxies in our control sample (59% +/- 9%), a result which is at the 2.5 sigma significance level. The fraction of non-axisymmetric hosts becomes even larger when interacting galaxies are taken into account. We discuss the implications of this result for the fueling of central activity by large-scale bars. This paper improves on previous work by means of imaging at higher spatial resolution and by the use of a set of stringent criteria for bar presence, and confirms that the use of NIR is superior to optical imaging for detection of bars in disk galaxies.
We present structural parameters and morphological properties of faint 450-um selected submillimeter galaxies (SMGs) from the JCMT Large Program, STUDIES, in the COSMOS-CANDELS region. Their properties are compared to an 850um selected and a matched star-forming samples. We investigate stellar structures of 169 faint 450-um sources (S450=2.8-29.6mJy; S/N>4) at z<3 using HST near-infrared observations. Based on our spectral energy distribution fitting, half of such faint SMGs (LIR=10^11.65+-0.98Lsun) lie above the star-formation rate (SFR)/stellar mass plane. The size-mass relation shows that these SMGs are generally similar to less-luminous star-forming galaxies selected by NUV-r vs. r-J colors. Because of the intrinsic luminosity of the sample, their rest-frame optical emission is less extended than the 850um sources (S850>2mJy), and more extended than the star-forming galaxies in the same redshift range. For the stellar mass and SFR matched sample at z~=1 and z~=2, the size differences are marginal between faint SMGs and the matched galaxies. Moreover, faint SMGs have similar Sersic indices and projected axis ratios as star-forming galaxies with the same stellar mass and SFR. Both SMGs and the matched galaxies show high fractions (~70%) of disturbed features at z~=2, and the fractions depend on the SFRs. These suggest that their star formation activity is related to galaxy merging, and the stellar structures of SMGs are similar to those of star-forming galaxies. We show that the depths of submillimeter surveys are approaching the lower luminosity end of star-forming galaxies, allowing us to detect galaxies on the main sequence.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا