ترغب بنشر مسار تعليمي؟ اضغط هنا

On the Formation of Bulges and Elliptical Galaxies in the Cosmological Context

102   0   0.0 ( 0 )
 نشر من قبل Vladimir Avila Reese
 تاريخ النشر 1998
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the formation of hot spheroidal systems within the frame of a scenario where galaxy formation and evolution is related to the gentle mass aggregation history and primordial angular momentum of protogalaxies, both defined by the cosmological initial conditions. We explore two cases: (1) the hot spheroidal system forms from the dynamical instabilities of the stellar disks, and (2) the spheroidal systems are formed during the dissipative collapse of the gas before falling to the disk in centrifugal equilibrium. In the former case a good agreement with observations for late type galaxies is found. In the second case, contrary to recent claims, we find that the tidal stability criterion is not easily reached. The gas that dissipatively collapses within the dark matter halos should be very clumpy, and the clumps very dense, in order to avoid the tidal destruction of the star formation unities.

قيم البحث

اقرأ أيضاً

98 - Yu-Ting Wu ASIAA , Taiwan 2015
N-body simulations of galactic collisions are employed to investigate the formation of elliptical rings in disk galaxies. The relative inclination between disk and dwarf galaxies is studied with a fine step of five degrees. It is confirmed that the e ccentricity of elliptical ring is linearly proportional to the inclination angle. Deriving from the simulational results, an analytic formula which expresses the eccentricity as a function of time and inclination angle is obtained. This formula shall be useful for the interpretations of the observations of ring systems, and therefore reveals the merging histories of galaxies.
In order to investigate the formation mechanisms of the rare compact elliptical galaxies (cE) we have compiled a sample of 25 cEs with good SDSS spectra, covering a range of stellar masses, sizes and environments. They have been visually classified a ccording to the interaction with their host, representing different evolutionary stages. We have included clearly disrupted galaxies, galaxies that despite not showing signs of interaction are located close to a massive neighbor (thus are good candidates for a stripping process), and cEs with no host nearby. For the latter, tidal stripping is less likely to have happened and instead they could simply represent the very low-mass, faint end of the ellipticals. We study a set of properties (structural parameters, stellar populations, star formation histories and mass ratios) that can be used to discriminate between an intrinsic or stripped origin. We find that one diagnostic tool alone is inconclusive for the majority of objects. However, if we combine all the tools a clear picture emerges. The most plausible origin, as well as the evolutionary stage and progenitor type, can be then determined. Our results favor the stripping mechanism for those galaxies in groups and clusters that have a plausible host nearby, but favors an intrinsic origin for those rare cEs without a plausible host and that are located in looser environments.
69 - Tobias Buck 2019
We investigate the impact of cosmic rays (CR) and different modes of CR transport on the properties of Milky Way-mass galaxies in cosmological magneto-hydrodynamical simulations in the context of the AURIGA project. We systematically study how advect ion, anisotropic diffusion and additional Alfven-wave cooling affect the galactic disc and the circum-galactic medium (CGM). Global properties such as stellar mass and star formation rate vary little between simulations with and without various CR transport physics, whereas structural properties such as disc sizes, CGM densities or temperatures can be strongly affected. In our simulations, CRs affect the accretion of gas onto galaxies by modifying the CGM flow structure. This alters the angular momentum distribution which manifests itself as a difference in stellar and gaseous disc size. The strength of this effect depends on the CR transport model: CR advection results in the most compact discs while the Alfven-wave model resembles more the AURIGA model. The advection and diffusion models exhibit large ($rsim50$ kpc) CR pressure-dominated gas haloes causing a smoother and partly cooler CGM. The additional CR pressure smoothes small-scale density peaks and compensates for the missing thermal pressure support at lower CGM temperatures. In contrast, the Alfven-wave model is only CR pressure dominated at the disc-halo interface and only in this model the gamma-ray emission from hadronic interactions agrees with observations. In contrast to previous findings, we conclude that details of CR transport are critical for accurately predicting the impact of CR feedback on galaxy formation.
261 - Antonio Pipino 2005
In this paper we compare the predictions of a detailed multi-zone chemical evolution model for elliptical galaxies with the very recent observations of the galaxy NGC 4697. As a consequence of the earlier development of the wind in the outer regions with respect to the inner ones, we predict an increase of the mean stellar [<Mg/Fe>] ratio with radius, in very good agreement with the data for NGC4697. This finding strongly supports the proposed outside-in formation scenario for ellipticals. We show that, in spite of the good agreement found for the [<Mg/Fe>] ratio, the predicted slope of the mass-weighted metallicity gradient does not reproduce the one derived from observations, once a calibration to convert indices into abundances is applied. This is explained as the consequence of the different behaviour with metallicity of the line-strength indices as predicted by a Single Stellar Population (SSP) and those derived by averaging over a Composite Stellar Population (CSP). In order to better address this issue, we calculate the theoretical ``G-dwarf distributions of stars as functions of both metallicity ([Z/H]) and [Fe/H], showing that they are broad and asymmetric that a SSP cannot correctly mimick the mixture of stellar populations at any given radius. We find that these distributions differ from the ``G-dwarf distributions especially at large radii,except for the one as a function of [Mg/Fe]. Therefore, we conclude that in ellipticals the [Mg/Fe] ratio is the most reliable quantity to be compared with observations and is the best estimator of the star formation timescale at each radius.(abridged)
By means of high-resolution cosmological hydrodynamical simulations of Milky Way-like disc galaxies, we conduct an analysis of the associated stellar metallicity distribution functions (MDFs). After undertaking a kinematic decomposition of each simul ation into spheroid and disc sub-components, we compare the predicted MDFs to those observed in the solar neighbourhood and the Galactic bulge. The effects of the star formation density threshold are visible in the star formation histories, which show a modulation in their behaviour driven by the threshold. The derived MDFs show median metallicities lower by 0.2-0.3 dex than the MDF observed locally in the disc and in the Galactic bulge. Possible reasons for this apparent discrepancy include the use of low stellar yields and/or centrally-concentrated star formation. The dispersions are larger than the one of the observed MDF; this could be due to simulated discs being kinematically hotter relative to the Milky Way. The fraction of low metallicity stars is largely overestimated, visible from the more negatively skewed MDF with respect to the observational sample. For our fiducial Milky Way analog, we study the metallicity distribution of the stars born in situ relative to those formed via accretion (from disrupted satellites), and demonstrate that this low-metallicity tail to the MDF is populated primarily by accreted stars. Enhanced supernova and stellar radiation energy feedback to the surrounding interstellar media of these pre-disrupted satellites is suggested as an important regulator of the MDF skewness.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا