ترغب بنشر مسار تعليمي؟ اضغط هنا

On the formation mechanisms of compact elliptical galaxies

105   0   0.0 ( 0 )
 نشر من قبل Anna Ferr\\'e-Mateu
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In order to investigate the formation mechanisms of the rare compact elliptical galaxies (cE) we have compiled a sample of 25 cEs with good SDSS spectra, covering a range of stellar masses, sizes and environments. They have been visually classified according to the interaction with their host, representing different evolutionary stages. We have included clearly disrupted galaxies, galaxies that despite not showing signs of interaction are located close to a massive neighbor (thus are good candidates for a stripping process), and cEs with no host nearby. For the latter, tidal stripping is less likely to have happened and instead they could simply represent the very low-mass, faint end of the ellipticals. We study a set of properties (structural parameters, stellar populations, star formation histories and mass ratios) that can be used to discriminate between an intrinsic or stripped origin. We find that one diagnostic tool alone is inconclusive for the majority of objects. However, if we combine all the tools a clear picture emerges. The most plausible origin, as well as the evolutionary stage and progenitor type, can be then determined. Our results favor the stripping mechanism for those galaxies in groups and clusters that have a plausible host nearby, but favors an intrinsic origin for those rare cEs without a plausible host and that are located in looser environments.

قيم البحث

اقرأ أيضاً

98 - Yu-Ting Wu ASIAA , Taiwan 2015
N-body simulations of galactic collisions are employed to investigate the formation of elliptical rings in disk galaxies. The relative inclination between disk and dwarf galaxies is studied with a fine step of five degrees. It is confirmed that the e ccentricity of elliptical ring is linearly proportional to the inclination angle. Deriving from the simulational results, an analytic formula which expresses the eccentricity as a function of time and inclination angle is obtained. This formula shall be useful for the interpretations of the observations of ring systems, and therefore reveals the merging histories of galaxies.
There is mounting evidence that compact elliptical galaxies (CEGs) are local analogs of the high-redshift red nuggets thought to represent progenitors of todays early-type galaxies (ETGs). We report the discovery of extended X-ray emission from a hot interstellar / intragroup medium in two CEGs, Mrk 1216 and PGC 032873, using shallow archival Chandra observations. We find that PGC 032873 has an average gas temperature $k_BT=0.67pm 0.06$ keV within a radius of 15 kpc, and a luminosity $L_{rm x} = (1.8pm 0.2)times 10^{41}$ erg s$^{-1}$ within a radius of 100kpc. For Mrk 1216, which is closer and more luminous $[L_{rm x}(rm <100~kpc) = (12.1pm 1.9)times 10^{41}$ erg s$^{-1}]$, we performed a spatially resolved spectral analysis in 7 annuli out to a radius of 73 kpc. Using an entropy-based hydrostatic equilibrium (HE) procedure, we obtain a good constraint on the $H$-band stellar mass-to-light ratio, $M_{rm stars}/L_H=1.33pm 0.21$ solar, in good agreement with stellar dynamical (SD) studies, which supports the HE approximation. We obtain a density slope $2.22pm 0.08$ within $R_e$ consistent with other CEGs and normal local ETGs, while the dark matter (DM) fraction within $R_e$, $f_{rm DM}=0.20pm 0.07$, is similar to local ETGs. We place a constraint on the SMBH mass, $M_{rm BH} = (5pm 4)times 10^{9}, M_{odot}$, with a 90% upper limit of $M_{rm BH} = 1.4times 10^{10}, M_{odot}$, consistent with a recent SD measurement. We obtain a halo concentration $(c_{200}=17.5pm 6.7)$ and mass [$M_{200} = (9.6pm 3.7)times 10^{12}, M_{odot}$], where $c_{200}$ exceeds the mean $Lambda$CDM value ($approx 7$), consistent with a system that formed earlier than the general halo population. We suggest that these galaxies, which reside in group-scale halos, should be classified as fossil groups. (Abridged)
Compact ellipticals (cEs) are outliers from the scaling relations of early-type galaxies, particularly the mass-metallicity relation which is an important outcome of feedback. The formation of such low-mass, but metal-rich and compact, objects is a l ong-standing puzzle. Using a pair of high-resolution N-body+gas simulations, we investigate the evolution of a gas-rich low-mass galaxy on a highly radial orbit around a massive host galaxy. As the infalling low-mass galaxy passes through the hosts corona at supersonic speeds, its diffuse gas outskirts are stripped by ram pressure, as expected. However, the compactness increases rapidly because of bursty star formation in the gas tidally driven to the centre. The metal-rich gas produced by supernovae and stellar winds is confined by the ram pressure from the surrounding environment, leading to subsequent generations of stars being more metal-rich. After the gas is depleted, tidal interactions enhance the metallicity further via the stripping of weakly bound, old, and metal-poor stars, while the size of the satellite is changed only modestly. The outcome is a metal-rich cE that is consistent with observations. These results argue that classical cEs are neither the stripped remnants of much more massive galaxies nor the merger remnants of normal dwarfs. We present observable predictions that can be used to test our model.
Compact elliptical galaxies form a rare class of stellar system (~30 presently known) characterized by high stellar densities and small sizes and often harboring metal-rich stars. They were thought to form through tidal stripping of massive progenito rs, until two isolated objects were discovered where massive galaxies performing the stripping could not be identified. By mining astronomical survey data, we have now found 195 compact elliptical galaxies in all types of environment. They all share similar dynamical and stellar population properties. Dynamical analysis for nonisolated galaxies demonstrates the feasibility of their ejection from host clusters and groups by three-body encounters, which is in agreement with numerical simulations. Hence, isolated compact elliptical and isolated quiescent dwarf galaxies are tidally stripped systems that ran away from their hosts.
The level of star formation in elliptical galaxies is poorly constrained, due to difficulties in quantifying the contamination of flux-based estimates of star formation from unrelated phenomena, such as AGN and old stellar populations. We here utilis e core-collapse supernovae (CCSNe) as unambiguous tracers of recent star formation in ellipticals within a cosmic volume. We firstly isolate a sample of 421 z < 0.2, r < 21.8 mag CCSNe from the SDSS-II Supernova Survey. We then introduce a Bayesian method of identifying ellipticals via their colours and morphologies in a manner unbiased by redshift and yet consistent with manual classification from Galaxy Zoo 1. We find ~ 25 % of z < 0.2 r < 20 mag galaxies in the Stripe 82 region are ellipticals (~ 28000 galaxies). In total, 36 CCSNe are found to reside in ellipticals. We demonstrate that such early-types contribute a non-negligible fraction of star formation to the present-day cosmic budget, at 11.2 $pm$ 3.1 (stat) $^{+3.0}_{-4.2}$ (sys) %. Coupling this result with the galaxy stellar mass function of ellipticals, the mean specific star formation rate (SSFR; $overline{S}$) of these systems is derived. The best-fit slope is given by log ($overline{S}(M)$/yr) = - (0.80 $pm$ 0.59) log ($M/10^{10.5}rm{M}_{odot}$) - 10.83 $pm$ 0.18. The mean SSFR for all log ($M/rm{M}_{odot}$) > 10.0 ellipticals is found to be $overline{S} = 9.2 pm 2.4$ (stat) $^{+2.7}_{-2.3}$ (sys) $times 10^{-12}$ yr$^{-1}$, which is consistent with recent estimates via SED-fitting, and is 11.8 $pm$ 3.7 (stat) $^{+3.5}_{-2.9}$ (sys) % of the mean SSFR level on the main sequence as also derived from CCSNe. We find the median optical spectrum of elliptical CCSN hosts is statistically consistent with that of a control sample of ellipticals that do not host CCSNe, implying that these SN-derived results are well-representative of the total low-z elliptical population.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا